
Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 1

Elecsys Director

POD Programming Manual

Product Information

Full information about other Elecsys products is available on our website at www.elecsyscorp.com

Useful Contact Information

Customer Support

Tel: +1-913-982-5672

Fax: +1-913-982-5766

Email: support@elecsysscada.com

Headquarters, Sales, Support & Manufacturing

Elecsys Corporation

846 N Mart-Way Court

Olathe, KS 66061

Tel: 913-982-5672

Fax: 913-982-5766

Email: sales@elecsysscada.com

While the Elecsys sales team may assist customers in choosing a product for a specific application,

the final choice of product is entirely the responsibility of the buyer. Elecsys entire liability with

respect to its products or systems is set out in the Elecsys standard terms and conditions of sale.

All example code is provided only to illustrate the use of Elecsys products. No warranty, either

expressed or implied, is made regarding any example code provided by Elecsys and Elecsys shall

incur no liability whatsoever arising from any use made of this code.

© 2014 Elecsys Corporation

http://www.elecsyscorp.com/
mailto:support@elecsysscada.com
mailto:sales@elecsysscada.com

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 2

Contents

1 Revision History ... 8

2 Preface .. 9

2.1 Scope of this Manual .. 9

2.2 Name Conventions ... 9

2.3 Anti-Static Handling .. 9

2.4 Electromagnetic Compatibility (EMC) ... 9

2.5 Packaging .. 9

2.6 Disclaimer .. 9

3 Introduction .. 10

4 POD Programming ... 11

4.1 POD Configuration Structure .. 11

4.2 POD Object .. 13

 4.2.1 Rules for Using the Result Addr .. 15

 4.2.2 POD Editing Tips .. 16

 4.2.3 POD Programming Tips .. 16

5 POD Programming Examples .. 19

5.1 Unlatch Relays Example .. 19

 5.1.1 UnlatchRelays-PODdemo ACE Configuration ... 19

 5.1.2 Using the UnlatchRelays Example .. 22

 5.1.3 Understanding the UnlatchRelays POD Logic ... 23

6 POD Function List .. 28

6.1 Function Reference Chart .. 28

 6.1.1 Mathematical Functions .. 28

 6.1.2 Comparison functions ... 28

 6.1.3 Logical/Boolean functions ... 29

 6.1.4 Program control .. 29

 6.1.5 Set or get registers, data conversion .. 29

 6.1.6 Director system access ... 30

 6.1.7 I/O board functions ... 30

 6.1.8 File access functions .. 31

 6.1.9 Communication functions .. 31

 6.1.10 Specialty functions .. 32

6.2 Commonly Used Functions .. 33

 6.2.1 + ADD Operand (Append Strings)... 33

 6.2.2 - SUBTRACT Operand (Remove Operand String occurrences from Source

String) ... 33

 6.2.3 * MULTIPLY Operand (Find Right Half of Operand String, Replace with Left

Half) .. 33

 6.2.4 / DIVIDE BY Operand (Return 1st N (Operand-Value) of Source String) 33

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 3

 6.2.5 MODULO DIVIDE by Operand (Return Last N (Operand-Value) of Source

String) ... 33

 6.2.6 > GREATER THAN Operand? (Including String Compare) 34

 6.2.7 < LESS THAN Operand? (Including String Compare) .. 34

 6.2.8 == EQUAL TO Operand? (Including String Compare) .. 34

 6.2.9 != NOT EQUAL TO Operand? (Including String Compare) 34

 6.2.10 ASSIGN Operand to Result (Ignore Source Addr) .. 34

 6.2.11 GOTO LABEL if Src is TRUE/Non-Zero, Operand=”Matching Label” 34

 6.2.12 NOT GOTO LABEL if SourceValue is FALSE/Zero, Operand="Matching

Label" ... 35

 6.2.13 LABEL ONLY in Operand as a STRING (Src and Result ignored) 35

 6.2.14 FOR_LOOP Src=Enbl Oprnd=5CfgRgs 0=Index, 1=Init&LoopVal, 2=Limit,

3=Stop@(0 '=', 1 '>', -1 '<'), 4=IncrmentVal ... 35

 6.2.15 JUMP RELATIVE if Src is TRUE by Operand Rows (+/-) .. 35

 6.2.16 GO_SUB_POD Subroutine If Src=Enable Operand=POD_Index to drop into

POD Subroutine ... 35

 6.2.17 RETURN If called by other POD then Return to Caller POD’s Row...

Src=Enable ... 36

 6.2.18 EXIT Stop this POD processing Src=Enable ... 36

 6.2.19 NOT EXIT Stop this POD processing if SourceValue=FALSE or ZERO.................... 36

 6.2.20 RUN POD(nnn) if SrcAddr=TRUE where Operand=POD_INDEX (1 to 9999).

POD won’t return. ... 36

 6.2.21 ** COMMENT ** ... 11 Chars in Operand. Not a LABEL (Src and Result

Ignored) .. 36

6.3 Other Functions .. 36

 6.3.1 ABSOLUTE VALUE Src=Value (Operand is ignored) ... 36

 6.3.2 AGA3_1982 Src=Enbl, Oper=10PtrRgs-> 0=Pipe 1=Orif 2=Tb 3=Pb 4=SG

5=SH 6=DP 7=LT 8=LP 9=Fpv ==> SCFH ... 37

 6.3.3 ARCCOS(x) Src=Real32-(-1 to +1) Operand=Ignored Returns REAL32

ArcCOS(x) .. 37

 6.3.4 ARCSIN(x) Src=Real32-(-1 to +1) Operand=Ignored returns REAL32

ArcSIN(x) .. 37

 6.3.5 ARCTAN(x) Src=Real32-(-oo to +oo) Operand=Ignored returns ArcTAN(x) 37

 6.3.6 ARCREAD Src=Enbl Opernd(AdrOf5CfgRegs) [0]=NameAdr 1=Offst 2=Rtu

3=Rtdb 4=Cnt ... 37

 6.3.7 ARCWRITE Src=Enbl Opernd(AdrOf5CfgRegs) [0]=NameAdr 1=Offst 2=Rtu

3=Rtdb 4=Cnt ... 38

 6.3.8 ARCZERO Src=Enbl Opernd(AdrOf3CfgRegs) [0]=NameAdr 1=Offst 2=Cnt 38

 6.3.9 ARCCHKSUM Src=Enbl Opernd(AdrOf3CfgRegs) [0]=NameAdr 1=Offst

2=Cnt .. 38

 6.3.10 ASYNC-IN Src=Enbl Opernd=PtrAdr 5CfgRgs [0]=ComPort 1=MxLen

2=EndChr 3=TmOut 4=Demrk Result=TypeString .. 38

 6.3.11 ASYNC-OUT (acscomm) Src=Enbl Opernd=PtrAdr 3CfgRgs [0]=ComPort

[1]=SendLength [2]=StringAdr...Result=Integer... 39

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 4

 6.3.12 BIT-AND Operand (Strings replace all "<~Or?>" in SrcString with Operand

String) ... 39

 6.3.13 BIT-OR Operand (Strings find all OperString in Src and replace with

"<~Or?>") ... 39

 6.3.14 BIT-PACK Src=>Start of Booleans Operand=1 to 16 bits to pack 40

 6.3.15 BIT-UNPACK Src==>Integer Value Operand=1 to 16 bits to unpack to 1 or

more Result Booleans. ... 40

 6.3.16 BIT-XOR Operand (Strings find 1st OperString in Src and replace with

"<~Or?>") ... 40

 6.3.17 CENTI-SEC CLOCK Ignore Source and Operand. Free running centisecond

Clock .. 40

 6.3.18 CHANNEL CONTROL Source=Chann(0 to 15), Operand=0-

Disable,NonZero-Enable : Return NewMode .. 41

 6.3.19 CHECK HTTPPOST Src=Enable, Opernd=Ignored, Returns String Message 41

 6.3.20 COPY_DATA_BLOCK Src=Enable, OprndCnst=> Rg[0]=Chn 1=Rtu 2=Rtdb

3=Cnt 4=Chn 5=Rtu 6=DstRtdb .. 41

 6.3.21 COSINE(x) Src=Real32-Radians Operand=Ignored Returns REAL32

cosine(x) ... 41

 6.3.22 DATA LOGGER Src=Enbl, Oprnd=PtrCfg-7 0=AddrStr256(Dir/File)

1=DataAddr 2=Count(Max=125) 3=MaxFiles 4=CSV? 5=w/HHMMss

6=Reserved .. 42

 6.3.23 Db9-Read Src=ComPort Operand=Ignored Result=Bit0=CTS 1=DCD 8=Error 43

 6.3.24 Db9-Write Src=ComPort Operand=BitMask Bit0=RTS Bit1=DTR

Result...0=OK else Fail ... 43

 6.3.25 DELAY If Src=TRUE then sleep Operand data Milliseconds 43

 6.3.26 DIAGLOG() Operand + Source Value as Strings .. 44

 6.3.27 DIRECTOR NAME from Apex System Object as from 'hostname' 44

 6.3.28 DNP_CRC Source=StrtUINT8, Operand=Count-UINT8 : Result=CRC (and

into UINT8 buffer) ... 44

 6.3.29 DNP_LOG Src=Enbl, Oper=2PtrRgs-> 0=EventBuf, 1=RtdbAdr, Result=0

Else Negative ... 44

 6.3.30 DNP_PULSE_AT_RTDB SrcAddr=Ignored : Operand=RtdbAddress

Associated with 1st Pulse Command : Rslt=Echo of Operand or -1 if error 44

 6.3.31 DUMP SCRATCHPADS to /tmp/director/S_PADpp.rr.txt where 'pp' is PodNdx

& 'rr' is Row if Src=Enable .. 45

 6.3.32 EDGE DETECT Src=BoolInput, Operand=Instance(0 to 9 RisingEdge, -1 to -

9 Falling Edge) ... 45

 6.3.33 EXP(x) Src=Real32-InputValue Operand=Ignored Returns REAL32 'e to the

x' ... 45

 6.3.34 FORCE POD RTU STATUS Src=Enbl Oprnd=ThisRtuStateState

(0=Good,2=Bad) Return:0=Ok, -1=Failed ... 45

 6.3.35 FORMAT Specifier 'C' Printf in Operand for SrcData, Result should be

UINT16,STR-32,STR-256 ... 46

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 5

 6.3.36 GET COLUMN FROM POLL RECORD Src=Ignored : Operand=> 0=SrcChn

1=SrcRtu 2=SrcAdr ... 46

 6.3.37 GET TIME Src/Oprnd=Ignored Result> INT16[0-

6]=YYYY,MM,DD,HH,MM,SS,ms INT32=1970+Secs

STRING=YYYYMMDD-HHmmSS.ds .. 46

 6.3.38 HTTPPOST Src=Enable Opernd=2PtrCfgs [0]=StartAdrOfStrings

1=CountofStrings .. 46

 6.3.39 INDEXed GET : SourceAddr value is RegAddr used as SrcData=> ResultAdr

: Operand Ignored... 47

 6.3.40 INDEXed SAVE : Src=Data2Save, Opernd=AddressOfSave,

Result=Overidden by Operand ... 47

 6.3.41 INTEGER to ASCII BYTE (Ignore Source Address, CHR$(Operand Value)) 47

 6.3.42 INVERT Bool=Not-Bool, IntBits=iNTbITS, Real=1.0/Real, String=gnirtS

(SrcVal-Cast-to-ResultType) Ignore-Operand ... 47

 6.3.43 LOG(x) Src=Real32-InputValue Operand=Ignored Returns REAL32

NaturalLog(x) .. 48

 6.3.44 LONG to REAL Copies 32 bits from Source Value to 32 bits of a Real32

value. .. 48

 6.3.45 MODBUS WRITE Src=Enable Opernd=>PtrAdr 5-CfgRgs [0]=SrcData 1=Cnt

2=DstChn 3=Rtu 4=DataAdr ... 48

 6.3.46 MQtt SEND CMD Src=Enbl, Opernd=CfgReg-5 0=TopicAdr 1=DataAddr

2=DataCount 3=QOS 4=PRIority : Return Handle .. 48

 6.3.47 MY RTU ADDRESS Returns INTEGER ... 49

 6.3.48 NX_19_Fpv Src=Enable, Oprnd=5PtrReg-> 0=Temp 1=Press 2=SpGrv

3=%CO2 4=%N2 ==> Fpv .. 49

 6.3.49 PACK TIME Src=Enbl Oprnd=PtrCfg-6 YY,DD,MM,HH,MM,SS : RETURN

SecondFrom1970 ... 49

 6.3.50 PARSE MQtt RBE Data Src=Enbl, Opernd=CfgPtr-3 0=CountOfTopics

1=Topic_Addr 2=DestChan-Rtu-DataMin/Max_Addr(X4) : Return Sequence

Number ... 49

 6.3.51 PC-104 DS-DMM-16-AT SrcAs5Addr=>Rg[0-4]=Ao(1-4)+DigOut8 :

Operand=CardPortAdr : Rslt=Regs[0-21] DIs,AIs,CIs,Brd-ID 50

 6.3.52 PC-104 IN-8 Src=Ignored Operand=CardPortAdr : Returns 8 Bit Packed

Integer .. 50

 6.3.53 PC-104 IN-16 Src=Ignored Operand=CardPortAdr : Returns 16 Bit Packed

Integer .. 50

 6.3.54 PC-104 MULTI-IO-16se SrcAs2Addr=>Rg[0]=Ao1 Rg[1]=Ao2

Operand=CardPortAdr Rslt=Regs[0-20] ... 50

 6.3.55 PC-104 MULTI-IO-8-DIFF SrcAs2Addr=>Rg[0]=Ao1 Rg[1]=Ao2

Operand=CardPortAdr Rslt=Regs[0-12] ... 51

 6.3.56 PC-104 OUT-8 Src=8-PackedBits Operand=CardPortAdr .. 51

 6.3.57 PC-104 OUT-16 Src=16-PackedBits Operand=CardPortAdr 51

 6.3.58 PC-104 TS-ADC16 SrcAs5Addr=>Rg[0-4]=Ao(1-4)+DigOut :

Operand=CardPortAdr : Rslt=Regs[0-21] DIs,AIs,CIs,Brd-ID 53

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 6

 6.3.59 PID-LOOP Src=Enbl, Oprnd=11Cfg-> 0=Ndx 1=(0=P,PI,PID,PIDp=3) 2=K.1%

3=T0(s/rpt) 4=T1 5=DirctAct 6=PV 7=SP 8=Man 9=Ovrd 10=MxErr =>0-4095 53

 6.3.60 POWer (x^y) Src=Mantissa, Operand=Exponent Returns REAL32 53

 6.3.61 PUBCONN Connection Status with MQtt Broker .. 54

 6.3.62 PUBHOST Which Host Table Entry is being used SrcAddr=Enable 54

 6.3.63 PUBNUMQ Number of Pending MQtt Messages .. 54

 6.3.64 PUBLISH Src=Enbl Operand(AdrOf-8) 0=Rtdb_4_Topic256 1=QOS

2=Retain? 3=Priority 4=Rtu 5=Rtdb_Adr 6=Count 7=Big_Endian :

Return=PubHandle ... 54

 6.3.65 PUBQUERY Check state of a message on the Q. Handle in Source Addr

Data. ... 55

 6.3.66 PUBWALK Walk the MQtt-Broker Connection Table SrcAddr=Enable 56

 6.3.67 PULSE FACTOR Src=RawCount, Oprnd=3PtrCfg-> [0]=K(Pls/Vol),

1=PrevRawCnt, 2=TotalVolume, Result=New Volume Increment 56

 6.3.68 RANDOM Number (Ignore Source) Operand=Seed (e.g. Time), Returns 0 to

2147483647.. 56

 6.3.69 REAL to LONG Copies 32 bits from Source Value to 32 bits of an Int32 value 56

 6.3.70 REVERSE [1,2,4] BYTE WORD Src=OriginalBits, Operand=1,2,4 Bytes-

SrcData Rslt=Bits Reversed (Force to INTEGER) ... 56

 6.3.71 RTU NAME SrcAddr=Channel : Operand=RtuAddr : Result is STRING 57

 6.3.72 SCRAMBLE Src=Enbl Opernd=PtrAdr 3CfgRgs [0]=StringAdr 1=TextLen

2=Scramble? Result=Converted String ... 57

 6.3.73 SegRecv Src=Enable Operand=PtrAdr 7CfgRgs 0=ComPrt 1=RtdbStrt 2=Cnt

3=Big? 4=CkSm 5=TmOt 6=Dmrk .. 57

 6.3.74 SEGSEND Src=Enable Opernd=5PtrCfgs [0]=ComPort 1=StrtAdr 2=Count

3=BigEndn 4=CkSum ... 57

 6.3.75 SEND BIRTH/DEATH CERTIFICATE Src=Enbl Oprnd=3CfgRgs[] 0=Chan

1=Rtu 2=(1=Birth,0=Death) Return:0=Ok -1=Fail .. 58

 6.3.76 SET RTU STATUS Src=Enbl Oprnd=3CfgRgs[] 0=Chan 1=Rtu

2=State(0=Good,2=Fail) Return:0=Ok, -1=Failed ... 58

 6.3.77 SINE(x) Src=Real32-Radians Operande=Ignored Returns REAL32 SINE(x) 58

 6.3.78 SQUARE ROOT of Source Value ... 58

 6.3.79 STRING DROP PART Src=String, Oprnd=NumBytes (Negatv=Left:

Positv=Right) .. 59

 6.3.80 STRING GET PART Src=String, Oprnd=NumBytes (Negatv=Left:

Positv=Right) .. 59

 6.3.81 STRING HEADER Src=Original_String Operand=Delimiter : Result=String to

Left of 1st Delimiter ... 59

 6.3.82 STRING LENGTH of Src=String, Operand=Ignored, Result=Integer Length

of String .. 59

 6.3.83 STRING TO LOWER Convert SrcString to Lower case, Ignore Operand. 59

 6.3.84 STRING TO UPPER Convert SrcString to Upper case, Ignore Operand. 59

 6.3.85 STRING TRAILER Src=Original_String Operand=Delimiter : Result=String to

Right of Last Delimiter .. 59

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 7

 6.3.86 STRING VALUE of Src=String with Operand ignored, Result=Integer value of

String .. 60

 6.3.87 SUBSCRIBE TO TOPIC Src=Enable : Opernd=TopicString-256 :

Result=SubscribeQueIndex .. 60

 6.3.88 SUBSCRIBED RECV'd DATA Src=Enable : Opernd=Cfgs[3] 0=AddrOfTopic

1=AddrOfUint8Data 2=Spare : Return=CntDataBytes... 60

 6.3.89 SYSTEM COMMAND Src=Shell_Script, Operand= Shell_Script_Parameters :

Returns (Integer) 0 if Successful ... 60

 6.3.90 TABLE-23B Src=Observd-Density(kg/m^3) : Opernd=Temp-degF :

Result=Density @60degF ... 61

 6.3.91 TANG(x) Src=Real32-Radians Operand=Ignored Returns REAL32 TANG(x) 61

 6.3.92 TEXT FIND Src=SrchString, Operand=ResultBufSize(<256) : Returns up to

BufSize bytes after Search-String ... 61

 6.3.93 TEXT FLUSH Buffer ... 61

 6.3.94 TEXT OPEN Src=FileName : Result is File Size, ignore Operand 61

 6.3.95 TEXT READ Src=Delimiter(s) Operand=MaxBytes, Returns String to the right

of Delimiter ... 62

 6.3.96 TEXT REMAINING : Ignore Src/Oprnd. Number of Bytes Still unread

remaining in Buffer .. 62

 6.3.97 TtysIn Src=Enbl Opernd=PtrAdr 5CfgRgs [0]=ComPort 1=MxLen 2=EndChr

3=TmOut 4=Demrk Result=TypeString ... 62

 6.3.98 TTYSOUT Src=Enbl Opernd=PtrAdr 3CfgRgs [0]=ComPort [1]=SendLength

[2]=StringAdr .. 62

 6.3.99 XML GET COUNT Src=Enabl, Opernd=PtrReg-> 4CfgRgs [0]=ElemntName

1=Parent 2=Attrib1 3=Attrib2 .. 63

 6.3.100 XML GET FIELD Attributes Src=Enabl, Opernd=PtrReg-> 6CfgRgs

[0]=ElemntName 1=Parent [2-5]=AttributeNames ... 63

 6.3.101 XML NEXT FIELD Src=Element Name to Advance, Opernd=Ignored Returns

INTEGER Number of bytes still in Buffer .. 63

 6.3.102 ZERO All Scratchpad Elements (-1 to -40) ... 64

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 8

1 Revision History

Revision Date Comments

A 4/22/2014 Initial release of POD Programming Manual

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 9

2 Preface

2.1 Scope of this Manual

This manual provides a detailed summary of the POD programming feature of the Director

configuration.

2.2 Name Conventions

All numbers are in decimal unless otherwise indicated. Where a number is prefixed by ‘0x’, the

value is in hexadecimal format.

2.3 Anti-Static Handling

This board contains CMOS devices that could be damaged in the event of static electricity being

discharged through them. At all times, please observe anti-static precautions when handling the

board and always unpack and install it in an anti-static working area.

2.4 Electromagnetic Compatibility (EMC)

The Elecsys Director is classified as a component with regard to the European Community EMC

regulations and it is the user’s responsibility to ensure that systems using the board are

compliant with the appropriate EMC standards.

Elecsys EMC tests of the Director have shown that the RF emissions of the board are well below

standard international EMC limits and that it is unlikely to contribute significantly to the RF

emissions spectrum of any system in which it is used.

2.5 Packaging

Please ensure that should a board need to be returned to Elecsys, it is adequately packed. Use

an anti-static bag for the board and use a box, not bag, to physically protect the board.

2.6 Disclaimer

The information in this manual has been carefully checked and is believed to be accurate.

Elecsys Corporation assumes no responsibility for any infringements of patents or other rights of

third parties that may result from its use.

Elecsys Corporation assumes no responsibility for any inaccuracies that may be contained in this

document. Elecsys makes no commitment to update or keep current the information contained in

this manual.

Elecsys Corporation reserves the right to make improvements to this document and/or product at

any time and without notice.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 10

3 Introduction
The Director is a multi-application remote data communications computer/data integration

device. It provides a wide array of SCADA and other communication and logic processing

functionality. In order to configure the operational characteristics of the Director, Elecsys

provides the Advanced Configuration Environment (ACE) program.

The Director allows for programmable logic routines to be included in its ACE configuration,

called PODs (for “Programming On Director”). This allows some reasonably complex operations

to be performed during the Director’s operation, such as examining or changing contents of data

registers, performing logical decisions or mathematical computations, publishing data, and a

variety of other functions.

Unlike ISaGRAF, which requires a third-party software development environment and generates

a reusable, multi-module logic program that is semi-autonomous from the Director configuration,

the POD logic routines are small, individual programs built into each configuration and may be

more easily customized for the needs of a specific device. Both ISaGRAF logic and POD

routines may be used in the same Director, if desired. Refer to the Director Getting Started

Guide for more discussion on the differences between ISaGRAF and POD logic, and the Director

ISaGRAF Manual for a full description of the ISaGRAF application.

It is assumed that the user has already installed the ACE Editor and is familiar with the ACE

configuration tools. Please refer to the ACE Operation Manual and Director Configuration

Manual for more details on using ACE to configure basic Director features such as master or

slave protocol communication.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 11

4 POD Programming
Historically, the Director has supported the ISaGRAF programming environment for adding

functional logic programs that provide a wide variety of powerful application development

options. ISaGRAF provides a full-featured application development environment, allowing the

Director to operate as a programmable logic controller (PLC) in addition to its built-in routing,

protocol translator, and host data publishing capabilities.

However, some applications only require a small to moderate level of programmability, such as

manipulating or making decisions on data stored in real-time databases (RTDBs). For these

types of requirements, the Director now supports the POD (Programming On Director) capability.

POD programming is similar in concept to Assembly Language programming, having a list of

opcodes having one or more parameters.

There can be up to 9999 PODs per Internal Master Channel. The following sections describe

how to program POD modules in the Director’s ACE configuration.

4.1 POD Configuration Structure

POD objects are executed by the Internal Master Channel, by calling an Internal Master Poll

Table entry that references the POD definition. The Internal Master RTU object determines

which POD will be executed and the Scan Table determines when it is called. More than one

Field Unit in the Internal Channel can call the same POD.

To run a POD program, the following set of ACE objects need to be configured:

Internal Channel Configure Scan entry points to a Poll Record of an Internal Master field unit
that’s configured to run a POD. The Scan Table entry is used like any
other Scan Table entry (Unit Address and Poll Record point to the
Internal Master Poll Table entry, and the Scan Period determines the
frequency at which the POD will be executed, sequentially with other
Scan Table entries in the list).

> Null Circuit Placeholder for Internal Master field unit

>> Internal Master The Field Unit may contain other Poll Table entries for data transfers

between RTDBs. One or more Poll Table entries may also be
configured to point to a POD object, which will contain the
programming instructions to be run. The normal Source/Destination
fields of the Internal Master Poll Table have special uses when calling
a POD program.

 Poll Table entry should contain:
 Src Chan – The first poll called by the Scan Table MUST have a valid

Src Chan, Src RTU, Src Data, and Dest Data parameters.
All other poll records for POD functions will operate

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 12

correctly with any value contained in the 1st three columns
and last column.

 Src RTU – See note for “Src Chan”, above.
 Src Data – See note for “Src Chan”, above.
 Src Type – Select the “Run POD” option.
 Src Count – Set the Src Count field to the POD index number.
 Dest Data – See note for “Src Chan”, above.

>>> RTDB All Field units require an RTDB definition. The POD is associated with the

RTDB for whichever instance of Field Unit that triggered it.
Programming instructions act on the RTDB registers associated with
that Field Unit.

> POD Program one or more POD objects with programming logic instructions.

IMPORTANT NOTE: You can have an Internal Master field unit and ISaGRAF field unit in

the same channel, or an Internal Master field unit and Virtual RTU in the same channel –

but not an ISaGRAF, Virtual RTU, and an Internal Master in the same channel.

POD programs may use RTDB registers for storing or using data during program execution.

There is also a Scratchpad area containing 40 elements (numbered -1 to -40). The Scratchpad

elements may use any of the following three data types:

 32-Bit INTEGER. These are used for BOOLEAN (Zero=False, Non-Zero=True), CHAR,

SHORT integer, and LONG integer data.

 32-Bit REAL (Floating Point)

 256-Byte STRING

At boot time, the values in Scratchpad areas are all set to zero/empty and the type is set to

INTEGER. An element in the Scratchpad can have its value and type changed each time a POD

program writes to it. Once written to, the element retains its value and type (INTEGER, REAL or

STRING) until the next write, even between successive executions of different PODs.

For example, writing a REAL value (such as 3.14159) to element ‘-5’ makes that element into a

REAL type, and the value can be accessed as the same. Later, a STRING value (such as

“Hello, World”) can be written to element “-5”, which changes the element’s type to STRING.

The next read of element ‘-5’ will return “Hello, World”. When POD programs need to use

intermediate values in calculations, it is much faster to read or write Scratchpad elements than

the read or write RTDB registers.

The POD maintains a row execution counter which is used to prevent infinite loops. If the POD

Interpreter does not return to the normal Internal Master Scan Table within this limit, then the

POD Interpreter routine is aborted.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 13

4.2 POD Object

The POD object holds one set of programming instructions to be called by the Scan Table based

on the Scan Period.

Properties Function
Object Type: DirectorPod

Parent(s): System>Clients>DataCons>InternalChannelFlexScan

Instance: Must be between 0 and 9999.

Fields Values
Row Delay Enter the amount of delay (in milliseconds) to insert after each instruction

in the list of Instructions is executed.
 Entering 0 will allow the POD to run as fast as possible. Inserting non-zero

a delay will help debug a POD by slowing it while viewing diagnostics
and enables more diagnostic messages from the POD interpreter.

Max Instructions Maximum number of instruction rows that can be executed per scan in the

sequence of the POD program. This includes all instructions executed
while inside a program loop. This parameter is designed to prevent the
POD program getting into an infinite loop based on incorrect design of
a POD program.

 Set this to 0 to disable loop testing. This might be used, for instance, with a
POD routine that never needs to exit, or which loops through several
hundreds of instruction lines.

Instructions Click the Edit Table button to enter the sequence of instructions of each

POD program. The POD program instructions are executed top to
bottom each time the POD is triggered using a Scan Table entry in the
Internal Master. Enter the data in the columns of the table.

 Source Addr – The Source Addr column either refers to the location of

data in the Field Device RTDB, or values in one of the Scratchpad
elements (-1 to -40). The type of data from the RTDB/Scratchpad sets
the data type for the entire row to either INTEGER, REAL or STRING.
(A Function can change the data type that will be saved to the Result
Address). Some functions ignore the Source Addr parameter.

 Function – There are over 100 "Functions" available as POD

programming instructions. Some functions only accept only one data
type (Integer, Floating point, String), while others can accept two or all
three data types. See Function Reference Chart on page 28 for a
complete description of the available programming instructions.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 14

 Operand Type and Operand – The Operand Type column determines
how to interpret the eleven character string contained in the "Operand"
entry.

 The Operand is normally used by the simpler functions (+,-,*,/, AND,
OR, XOR, etc). Some Functions ignore the "Operand". The three
"Operand Types" are:

 Constant: The 11 character "Operand" column is converted to either a

REAL or INTEGER value. A REAL value must have a Decimal Point
and can be in scientific notation. INTEGER values are interpreted as
Hexadecimal if the first letter is a lower case 'x'.

 If the Constant address is 9 digits or less, a SPACE followed by
additional characters can be placed into the field as a short comment.
For example, “4095 MxValu” is used as an integer of 4095; the
“MxValu” is a comment and is ignored for operational purposes.

 RTDB Address: The 11 character "Operand" string is converted to an

integer and then the register value from the RTDB is used in place of
the Operand. If value is negative (-1 to -40) then the POD will
reference Scratchpad variables instead of an RTDB location.
Scratchpad variables are additional variables numbered 1 to 40, which
can be used by other Instructions in the POD.

 If the RTDB address is 5 digits or less a SPACE and more characters
can be placed into the field as a short comment.

 STRING as is: The 11 character "Operand" is used as a String verbatim.

A single dollar sign ($) character is converted into the vertical bar
symbol (|). Two consecutive dollar signs ($$) are converted into a
SPACE/DOLLAR-SIGN pair ($).

 Result Addr – The Result Addr column can be either a register address in

the RTDB of the Internal Master field unit, or one of the Scratchpad
elements (-1 to -40). See Rules for Using the Result Addr on page 15
for rules on how the Function output will be converted based on the
destination type.

 Cast Result As – The Cast Result As column determines the output type

of data, when the Function operates on a numeric value. The data
type (Boolean, UINT32, FLOAT, STRING-32, etc.) must match the
data type configured for the Result Addr register in the RTDB.

The following sections below describe some additional help in programming with PODs, the

Functions used in the POD programming instructions, and some application examples using

PODs.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 15

4.2.1 Rules for Using the Result Addr

Here are some rules for the Result Addr parameter of the POD Instruction list, when storing a

value.

1) Saving result to Scratchpad elements [-1 to -40].

a) When the Cast Result as is BOOLEAN, CHAR, SINT16, or SINT32 – The Scratchpad

data is stored as INTEGER. If the original value was REAL, then the value is truncated at

the decimal point before being stored. If the original data was STRING, then the atoi()

function (Alpha to Integer) converts the string to an integer.

b) When the Cast Result as is REAL32 – The Scratchpad data is stored as REAL. If the

original value was INTEGER, then the value is converted to a REAL. If the original value

is a STRING, then the atof() function will convert the string to a floating point value.

c) When the Cast Result as is STRING-32 or STRING-256 – The Scratchpad data is stored

as STRING. If the original value was INTEGER, then the “%d” C format is used to

convert the integer to a string. If the original value was REAL, then the “%g” C format is

used to convert the floating value to a string.

2) Saving result to RTDB registers of the following types using INTEGER functions.

a) Boolean register: Non-zero INTEGER stored as True, Zero stored as False.

b) UINT8 register: Least Significant Byte of INTEGER stored in register.

c) SINT16/UINT16 register: Least Significant Word of INTEGER stored in register.

d) SINT32/UINT32 register: Entire INTEGER result will be stored.

e) REAL32 register: INTEGER result will be converted to floating point and stored.

f) STRING-32/256 registers: INTEGER result stored as formatted string.

3) Saving result to RTDB registers of the following types from REAL functions.

a) Boolean register: Non-zero value stored as True, Zero stored as False.

b) UINT8 register: Least Significant Byte of the REAL value after it has been truncated to an

Integer.

c) SINT16/UINT16 register: Least Significant Word of the REAL value after it has been

truncated to an Integer.

d) SINT32/UINT32 register: REAL value will be truncated to an Integer and stored.

e) REAL32 register: REAL value stored directly.

f) STRING-32/256 registers: REAL result will be formatted using the “%g” C format.

4) Saving result to RTDB registers of the following types from STRING functions.

a) Boolean register: Non-zero STRING stored as True, Zero stored as False.

b) UINT8 register: Up to 256 registers will receive one corresponding byte from the STRING.

c) SINT16/UINT16 register: Up to 128 registers will receive two corresponding bytes from

the STRING, with the first ASCII character in the least-significant byte.

d) SINT32/UINT32 register: Up to 64 registers will receive four corresponding bytes from the

STRING with the first ASCII character in the least-significant byte.

e) STRING-32 register: First 32 characters of the STRING will be stored, the remainder will

be truncated.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 16

f) STRING-256 register: Entire STRING will be stored.

4.2.2 POD Editing Tips

The following tips will be helpful suggestions when creating the POD Instruction list.

1) Create a row with the Function set to **COMMENT**, with zeroes in all of the numeric

columns, and “...” in the Operand Type column. Then select this row and press the “Insert

Before...” button dozens of times to create dozens of new identical rows. Then modify these

rows to write the POD routine.

2) If you know the first few letters of the ‘Function’ then move the cursor to that column and type

a few characters and then press ALT-DOWN-ARROW. This will highlight the first matching

entry from the list of 100+ Functions. If the exact Function that you want was highlighted,

then you either need to LEFT CLICK on the entry or use DOWN ARROW followed by an UP

ARROW and then press the ENTER key.

3) Labels may be easier to read by starting them with two hyphens (--) and then up to 9 more

characters, entered in the Operand column. This label is used in the GOTO LABEL for ‘FOR

LOOP’ Functions. Labels are case sensitive.

4) Integer values in the Operand column can start with a lower case ‘x’ to indicate the value is in

hexadecimal. For example, 255 and x0ff are the same integer value.

4.2.3 POD Programming Tips

Here are some additional tips for programming techniques in writing POD program routines.

1) Use the DiagLog function to view intermediate values or determine flow of routine.

2) Heavily use many RTDB registers to be able to follow the routine’s calculations/results which

will slow the execution speed. Then to increase execution speed use ‘Scratch-PAD’

elements for intermediate results.

3) A quick technique to pass a couple of configuration parameters to a POD routine is to use the

Internal RTU’s Poll Table ‘Src Data’ column or ‘Dest Data’ which are not required for normal

POD execution. The ‘GET COLUMN FROM POLL RECORD’ function will use a ‘2’ for ‘Src

Data’ and ‘5’ for ‘Dest Data’.

4) The ‘DUMP SCRATCHPADS’ Function will dump the contents of all of the elements to the file

/tmp/director/S_PADpp.rr.txt where ‘pp’ is the POD Index and ‘rr’ is Row Number used

making the call.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 17

5) A technique to implement an expiration timer is to call either the CENTI-SEC CLOCK or GET

TIME functions and save the results to a 32 bit integer. Then add the number of 1/100s of

seconds to the CENTI-SEC CLOCK value or whole seconds to the GET TIME value. Then

compare the current CENTI-SEC CLOCK or GET TIME values to determine if a timer has

expired.

6) It is handy to use the ‘PreInitRTDB.ODF’ object to setup groups of configuration parameters

for functions such as MODBUS WRITE, COPY BLOCK, HTTPPOST or any other function

that uses the Operand value as a reference to a start of a block of configuration parameters.

Also use PreInitRTDB to setup longer strings (31 chars at a time) versus the 11 at a time max

in the ‘Operand’ column.

7) String SEARCH and REPLACE can be implemented using the BIT_OR/XOR with BIT_AND

functions. The ‘Source Addr’ data string is searched for all occurrences of Operand Strings

and replaced with “<~Or?>” string(s) using the BIT_OR Function. Then you will call the

BIT_AND which will search the ‘Source Addr’ data string for “<~Or?>” and replace all

matches with the Operand String. The BIT_XOR will only search for the first occurrence of

Operand String.

8) If you have some knowledge of writing Linux shell scripts then you can use SYSTEM CALL to

echo text to an output file in /tmp/director/ and then call the script. You should output the

results of shell scripts to something like /tmp/director/ResultXX.txt. You can use the

OPEN_TEXT, FIND_TEXT, etc., to read the contents of these result files.

9) ISaGRAF is faster, easier to write, has named variables and can be dynamically debugged.

PODs may have a slow execution speed, and they are also harder to create and edit.

10) How to use XML functionality. If you need to work with XML formatted string data, you can

use the following techniques.

a) Open XML text file with TEXT OPEN function call. This reads the file into an allocated

memory buffer. Parent Sections must begin as <ThisParent> and terminate with

</ThisParent>. Child Sub-sections must begin with <ThisChild> and terminate with

</ThisChild>.

b) Get the count of Parent sections to read with XML GET COUNT. Set String-0 to the

Parent/Major section name with a NULL string in String-1 and String-2. String-1 would

normally be Parent Section name so setting it null indicates that there is not a Parent

Section. A technique to place nulls into strings is to call INTEGER to ASCII with Constant

0 in Operand. The Major section name should be something like… <remote …or…

<channel …as long as it begins with a Greater-than symbol.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 18

c) Get the count of Child/sub-sections in current Parent/major section with String-0 as the

Child/Sub-section name, String-1 as Parent Section name, and String-2,3 set to null.

d) Read the attributes of the Current Parent with XML GET FIELD using String-0 as Parent

Name, String-1 set NULL (No parent of this field) and String-[2-9] as Attributes retrieved

for this Parent. Strings[2-9] should be look like… address= …or… interface= …etc. The

‘Result Address’ for the XML GET FIELD function is actually used as a starting address of

STRING-32 for values of associated Attributes found in Parent. Each Value String will

have original Attribute string requested. Remove the original Attribute string (address=)

with STRING TRAILER and associated Attribute for Value without attribute. Double

quotes that can be removed with ‘- Subtract’, STRING as is, “ which will removed all

double quotes. Lastly STRING VALUE can convert the ASCII Value string into an

Integer.

e) Read attributes of each Child/Sub-section (String-0) with String-1 containing the Section’s

Parent name. Strings[2-12] are the Attributes to be searched for this child. You can

request more Attributes than might be found in the Child’s sub-section. Attributes can be

like… lowlimit value= …or… normalstate value= …or… maximum delta= . The Attributes

can be continuations of elements in the Child Declaration header or as their own

<attrib=”content” /> entries before the </ThisChild> marker. Once the XML GET FIELD

reads a Sub-section set of attributes it eliminates the marker starting this Child’s Sub-

section. This prevents searching and finding this Child a second time.

f) After getting the field data for the last Child under the current parent you must call XML

NEXT FIELD to eliminate this section’s Parent Marker so that the next Parent will be

processed.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 19

5 POD Programming Examples
This section gives some examples of POD programs to illustrate the POD programming

methods. The sample ACE configurations for the programs illustrated here can be downloaded

from http://ftp.elecsyscorp.com/ACE/PODDemoConfigurations.zip

See the Director Configuration Manual for a more complete explanation of the configuration

properties of the individual ACE objects. This section will primarily focus on explaining how the

POD logic works, with only minimal discussion on the other parts of the configuration.

5.1 Unlatch Relays Example

This example shows how to use a POD to monitor one or more digital registers for a transition

from False to True. After the signal becomes true, a configurable timer is started. Once the

timer expires, the POD clears the digital register back to a zero.

The background of this example is that a host system writes a Trip signal to the Director, which

may be read or used by other processes. But the host only sets the Trip value to True and

doesn’t clear it, requiring the Director to clear the point itself.

5.1.1 UnlatchRelays-PODdemo ACE Configuration

Open the example configuration in the ACE editor.

For purposes of this example, the data coming from a host system is simulated by writing into

Virtual RTU 4 using a Custom Report. The Internal Master RTU 5, along with the POD 99,

demonstrate the POD programming logic to read and clear the input data points after they are

tripped.

This section provides an overview of the parts of the configuration that will be important for

understanding this demo.

http://ftp.elecsyscorp.com/ACE/PODDemoConfigurations.zip

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 20

 Virtual RTU 4 – Provides RTDB data location, simulating data that would be coming from

the host computer. Registers 1, 3, and 9 are the digital points being written into with Trip

signals and cleared by the POD logic.

 Internal Master RTU 5 – The Internal Master RTU reads the data internally from RTU 4

into its own RTDB, then runs the POD logic for each of the monitored points (1, 3, and 9).

The Internal Master’s Poll Table uses two rows per point to be monitored for Trip values.

In each pair of registers, the first row copies the point value from the source RTDB

(channel 14, RTU 4) to the Internal Master (RTU 5). The point number in the source and

destination databases are the same, and the same number must also be used in the 2nd

row of each pair for the Src Data column (this is read by the POD function).

 Internal Channel 14 – The Internal Channel contains the Virtual and Internal Master

RTUs, and its Scan Table continuously scans the six poll records of RTU 5.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 21

 PreInit Data (RTU 5) – The Pre-Initialized Data object stores some default values into the

RTU 5 database on startup of the Director. These values will be explained in more detail

in a later section. The most important of these points is the first, register 41099. This is

set to a value of 10, which is the number of seconds for the timer.

 POD – The POD program exists as a child object under the Internal Channel (arbrarily set

to instance #99 in this example). The details of each step in the POD logic will be

explained in more detail in a later section.

 Custom Report – A Custom Report is used to give an easy user interface for entering

simulated data and seeing the results of the POD activity.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 22

5.1.2 Using the UnlatchRelays Example

If necessary, modify the Ethernet address in the example and download the configuration to a

Director. After restarting with this configuration, log in to the Director’s user menu and go to the

Diagnostics menu. Select option 535, View Custom Reports.

Enter ‘99’ for the custom report number, and ‘1’ for the refresh rate. In the custom report, the

“DO1”, “DO3”, and/or “DO9” entries will be written to a value of 1 to simulate incoming data from

a host system. Once any of these signals goes to ‘ON’, the “PO1”, “PO3”, and/or “PO9” will also

be set to ‘ON’. These are registers in the Internal Master RTU 5 used to keep track of the current

state of the input. After 10 seconds, both of these values will be reset to ‘OFF’ by the POD logic.

With the Custom Report pointer on the DO1 value, enter ‘C’ to change a value. Enter a value of

‘1’ for DO1, then Enter again to return to the Custom Report screen. The “DO1” and “PO1”

should be ‘ON’ for about 10 seconds, then both switch back to ‘OFF’. The same can be done

with “DO3” and “DO9”, but changing “DO2”, “DO4”, or “DO5” will not have the same effect,

because the configuration is not set up to monitor those points.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 23

5.1.3 Understanding the UnlatchRelays POD Logic

This section gives a detailed explanation of the POD program for the UnlatchRelays example.

For more general information about each instruction type in the POD program, see POD

Function List on page 28.

Open the Instructions table for the POD in the example program. The following paragraphs

describe what each instruction does.

Row Source

Addr

Function Operand Type Operand Result

Addr

Cast

Result As

1 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

..SETUP 0 SINT32

This instruction is just a comment. Comments are used throughout the POD to provide a brief

description of what follows (“SETUP”), but also to break up the POD into sections as a visual aid

when analyzing the program’s function.

2 0 ASSIGN Operand to Result (Ignore Source

Addr)

Constant (Integer or

Floating Point)

0 OFF -30 SINT32

3 0 ASSIGN Operand to Result (Ignore Source

Addr)

Constant (Integer or

Floating Point)

1 ON -31 SINT32

These rows define the POD’s Scratchpad registers [-30] and [-31] to be constant values of 0 and

1, respectively (everything after the space is ignored and treated as a comment). The ASSIGN

function assigns the constant value contained in the Operand column to the Scratchpad register

given in the Result Addr column.

4 -40 GET COLUMN FROM POLL RECORD

Src=Ignored : Operand=> 0=SrcChn

1=SrcRtu 2=SrcAdr

Constant (Integer or

Floating Point)

2 Coil Adr -32 SINT32

5 -40 GET COLUMN FROM POLL RECORD

Src=Ignored : Operand=> 0=SrcChn

1=SrcRtu 2=SrcAdr

Constant (Integer or

Floating Point)

5 GrpIndx -33 SINT32

These rows get a value from the Poll Record of the Internal Master of RTU 5. This instruction

refers to the Poll Table record that called this execution of the POD function. The Operand

column contains a constant pointing to the column (starting from 0). For example, the 4th row in

the Poll Table has the following entries:

Src Chan Src Rtu Src Data Src Type Src Count Dest Data

14 5 3 Run POD 99 1

The two POD rows read column 2 (Src Data) into Scratchpad register [-32], and column 5 (Dest

Data) into Scratchpad register [-33]. These values represent the RTDB register number of the

point to be examined, and the POD’s index number for this point, respectively. The index

number is a consecutive number starting from 0, used to keep track of each point and their

timers individually.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 24

Row Source

Addr

Function Operand Type Operand Result

Addr

Cast

Result As

6 -33 + ADD Operand (Append Strings) Constant (Integer or

Floating Point)

41001 -34 SINT32

This row adds the value in Scratchpad [-33] (index number) to the constant 41001, and stores

the result into Scratchpad [-34]. This will be the register holding the timestamp for each point

whenever the Trip value occurs. Registers 41001 through 410xx are required to exist in the RTU

5 database, depending on the highest index number used.

7 -32 INDEXed GET : SourceAddr value is

RegAddr used as SrcData=> ResultAdr :

Operand Ignored

Constant (Integer or

Floating Point)

0 Current 10097 SINT32

This row does an Indexed Get (indirect read of an RTDB register). The value in Scratchpad [-32]

contains a number of the RTDB register of the data point. The value stored in that register is

read into register 10097 in the Internal Master. Note that this the Internal Master Poll table must

have already polled the data from its original location into the RTU 5 database before this

function is called. As an example, the 3rd row in the Poll Table reads register 3 (Channel 14,

Unit 4) into RTU 5 at register 3. This is the “Current” value of the point.

Src Chan Src Rtu Src Data Src Type Src Count Dest Data

14 4 3 Boolean 1 3

8 -32 + ADD Operand (Append Strings) Constant (Integer or

Floating Point)

10000

Last

-35 SINT32

9 -35 INDEXed GET : SourceAddr value is

RegAddr used as SrcData=> ResultAdr :

Operand Ignored

Constant (Integer or

Floating Point)

0 Prev 10098 SINT32

These rows add 10000 to the Scratchpad [-32] and stores the result into Scratchpad [-35]. This

will create a value pointing to a 100xx register in RTU 5. Then an Indexed Get takes the value

from the 100xx register snd stores it into register 10098. This is the “Previous” value of the point.

The Current and Previous values of the point will be compared below.

10 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

... 0 SINT32

11 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

..COMPA

RE

0 SINT32

12 10097 == EQUAL TO Operand? (Including

String Compare)

Constant (Integer or

Floating Point)

0 OFF -36 SINT32

13 -36 EXIT Stop this POD processing Src=Enable STRING as is (Eleven

Characters)

DONE -40 SINT32

Row 12 performs a comparison between register 10097 (Current) and the constant of 0 in the

Operand column. The result is stored into Scratchpad [-36], which is checked in the next row – a

True indicates that register 10097=0 (current value of register is not tripped), which triggers the

EXIT function in the POD, returning control back to the Internal Master Channel. No further

instructions are run on this execution of the POD.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 25

Row Source

Addr

Function Operand Type Operand Result

Addr

Cast

Result As

14 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

RTDB Address (or

Scratch-Pad[-1 to -40])

... 0 SINT32

15 10098 GOTO LABEL if Src is TRUE/Non-Zero,

Operand="Matching Label"

STRING as is (Eleven

Characters)

--

CHKLIMIT

-40 SINT32

Row 15 checks register 10098, and if true (previous value of coil is ON), jump to the POD

instruction with the label “--CHKLIMIT” (Row 24). When the original coil is first set to ON, this

GOTO statement doesn’t occur, but does happen on subsequent executions of the POD, until

the timer expires.

Rows 16 through 22 are only executed when the point value goes from OFF to ON.

16 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

RTDB Address (or

Scratch-Pad[-1 to -40])

... 0 SINT32

17 10097 INDEXed SAVE : Src=Data2Save,

Opernd=AddressOfSave,

Result=Overidden by Operand

RTDB Address (or

Scratch-Pad[-1 to -40])

-35

SavCoil

-40 SINT32

Row 17 does an Indexed Save (indirect write), storing the value contained in 10097 (Current

value) into the 100xx register stored in Scratchpad [-35] (Previous value – see Rows 8 and 9).

18 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

RTDB Address (or

Scratch-Pad[-1 to -40])

... 0 SINT32

19 -40 GET TIME Src/Oprnd=Ignored Result>

INT16[0-6]=YYYY,MM,DD,HH,MM,SS,ms

INT32=1970+Secs STRING=YYYYMMDD-

HHmmSS.ds

Constant (Integer or

Floating Point)

0 Seconds -37 SINT32

20 -37 + ADD Operand (Append Strings) RTDB Address (or

Scratch-Pad[-1 to -40])

41099 -37 SINT32

21 -33 + ADD Operand (Append Strings) Constant (Integer or

Floating Point)

41001 -36 SINT32

22 -37 INDEXed SAVE : Src=Data2Save,

Opernd=AddressOfSave,

Result=Overidden by Operand

RTDB Address (or

Scratch-Pad[-1 to -40])

-36 -40 SINT32

The next several rows get the current date/time from the Director system into Scratchpad [-37],

add to this number the configurable time delay (register 41099). Then, Scratchpad [-33] (index)

is added to the constant 41001, and stored into Scratchpad [-36]. Finally, the augmented

date/timestamp from Scratchpad [-37] is saved into the 410xx register (from Scratchpad [36]).

These 410xx registers hold the date/timestamps for each data point being monitored and

represent the date/timestamp when each point will be cleared back to OFF. Enough 410xx

registers must be configured in the RTU 5 database for the number of points being monitored.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 26

Row Source

Addr

Function Operand Type Operand Result

Addr

Cast

Result As

23 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

..... 0 SINT32

24 0 LABEL ONLY in Operand as a STRING

(Src and Result ignored)

STRING as is (Eleven

Characters)

=--

CHKLIMIT

0 STRING-32

25 -34 INDEXed GET : SourceAddr value is

RegAddr used as SrcData=> ResultAdr :

Operand Ignored

Constant (Integer or

Floating Point)

0 GetLimit -37 SINT32

26 -40 GET TIME Src/Oprnd=Ignored Result>

INT16[0-6]=YYYY,MM,DD,HH,MM,SS,ms

INT32=1970+Secs STRING=YYYYMMDD-

HHmmSS.ds

Constant (Integer or

Floating Point)

0 Seconds -38 SINT32

27 -38 < LESS THAN Operand? (Including

String Compare)

RTDB Address (or

Scratch-Pad[-1 to -40])

-37 Limit -39 SINT32

28 -39 EXIT Stop this POD processing Src=Enable Constant (Integer or

Floating Point)

0 EXIT -40 SINT32

Rows 24 through 28 compare the current date/time with the augmented date/time for this point,

and exit the POD if the time hasn’t yet exceeded the configured delay timer. Row 24 is the label

“--CHKLIMIT”, used in a previous GOTO statement. Row 25 does an Indexed Get from the

register contained in Scratchpad [-34] (410xx register) and stores the augmented date/timestamp

into Scratchpad [-37]. Row 26 gets the current date/time from the Director and stores into

Scratchpad [-38], then a comparison is made whether current time is less than the stored

timestamp. If so (Scratchpad [-39] is True), then exit the POD.

29 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

..... 0 SINT32

30 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

..CLR_BIT

S

0 SINT32

31 -30 INDEXed SAVE : Src=Data2Save,

Opernd=AddressOfSave,

Result=Overidden by Operand

RTDB Address (or

Scratch-Pad[-1 to -40])

-32 Src -40 SINT32

32 -30 INDEXed SAVE : Src=Data2Save,

Opernd=AddressOfSave,

Result=Overidden by Operand

RTDB Address (or

Scratch-Pad[-1 to -40])

-35

ClrPrev

-40 SINT32

If the timestamp has exceeded the trigger time plus the delay time, the digital points are cleared

back to False. Row 31 does an Indexed Save from Scratchpad [-30] (constant 0) into the

register contained in Scratchpad [-32] (“Current” copy of point value in RTU 5, 000xx register),

and also into the register contained in Scratchpad [-35] (“Previous” copy of point value in RTU 5,

100xx register).

33 0 ** COMMENT ** ... 11 Chars in Operand.

Not a LABEL (Src and Result Ignored)

STRING as is (Eleven

Characters)

..... 0 SINT32

34 0 ASSIGN Operand to Result (Ignore Source

Addr)

RTDB Address (or

Scratch-Pad[-1 to -40])

-32

CoilAdr

40017 SINT32

35 -31 COPY_DATA_BLOCK Src=Enable,

OprndCnst=> Rg[0]=Chn 1=Rtu 2=Rtdb

3=Cnt 4=Chn 5=Rtu 6=DstRtdb

Constant (Integer or

Floating Point)

40011

Cfgs

40018 SINT32

Finally, Row 34 assigns the value in Scratchpad [-32] (000xx) into register 40017. This value is

then used by the COPY DATA BLOCK routine. Scratchpad [-31] (always ON) triggers the copy,

and registers 40011-40017 in RTU 5 (starting register indicated by Operand column) contain

parameters telling what registers will be copied. These values in 40011-40017 were initialized

using the Pre-Init RTDB object. The purpose of these registers is as follows:

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 27

Register Value Purpose

40011 14 Channel of POD unit

40012 5 RTU address of POD unit

40013 10099 Source register, always False

40014 1 Count of registers to copy

40015 14 Channel of original RTDB containing data

40016 4 RTU address of original RTDB

40017 000xx Destination register for COPY block. This is

updated by the POD before it clears the original

data point back to False, allowing the POD to

dynamically write into a configurable desination.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 28

6 POD Function List
The following sections describe the operation of the Functions used in the POD instruction list.

There are over 100 "Functions" available. Some functions only accept Integer or Floating point

or String data while others can accept two or all three data types.

 Function Reference Chart gives a categorized cross-reference of functions based on

function type.

 Commonly Used Functions describes many of the most essential functions.

 Other Functions describes the remainder of the function list in alphabetical order.

6.1 Function Reference Chart

Below is a listing of POD functions that are categorized according to function type and cross-

referenced to the sections describing how to use them. All reference to “registers” can include

RTDB register locations or Scratchpad variables.

6.1.1 Mathematical Functions

Function Description Page

ADD Add two numbers, or concatenate strings. 33

SUBTRACT Subtract two numbers, or eliminate one string from another. 33

MULTIPLY Multiply two numbers, or replace all occurrences in a string. 33

DIVIDE BY Divide two numbers, or return first byte of string. 33

MODULO DIVIDE Divide two numbers and return fractional portion. 33

ABSOLUTE VALUE Take absolute value of a number. 36

ARCCOS(x) Find the arccosine of a number. 37

ARCSIN(x) Find the arcsine of a number. 37

ARCTAN(x) Find the arctangent of a number. 37

COSINE(x) Find the cosine of a number. 41

EXP(x) Calculate exponential (ex) value. 45

LOG(x) Calculate natural logarithmic (ln(x)) value 48

POWer (x^y) Perform a power (xy) calculation. 53

RANDOM Generate a random number. 56

SINE(x) Find the sine of a number. 58

SQUARE ROOT Calculate the square root of a number. 58

TANG(x) Find the tangent of a number. 61

6.1.2 Comparison functions

GREATER THAN Return True if number is greater than another. 34

LESS THAN Return True if number is less than another. 34

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 29

EQUAL TO Return True if number or string is equal to another. 34

NOT EQUAL TO Returns True if numbers or strings are not equal. 34

6.1.3 Logical/Boolean functions

BIT-AND Bit-wise AND two numbers, or replace all occurrences in string. 39

BIT-OR Bit-wise OR two numbers, or replace all occurrences in string. 39

BIT-XOR Bit-wise XOR two numbers, or replace all occurrences in string. 40

INVERT Invert Boolean value, or bits in word, or 1.0/real number, or

reverse order of a string.

47

6.1.4 Program control

GOTO LABEL Jump to another labeled POD program step on true/non-zero. 34

NOT GOTO LABEL Jump to another labeled POD program step on false/zero. 35

LABEL ONLY Label a step to be used for a GOTO. 35

FOR_LOOP ‘For’ loop for program iteration. 35

JUMP RELATIVE Jump to another POD program step relative to the current step. 35

GO_SUB_POD Call another POD program as a subroutine. 35

RETURN Return from a subroutine. 36

EXIT Exit from POD processing on true/non-zero. 36

NOT EXIT Exit from POD processing on false/zero. 36

RUN POD(nnn) Run another POD program without returning to current. 36

COMMENT Add a comment or a row separator for readability. 36

DELAY Sleep for a number of milliseconds. 43

6.1.5 Set or get registers, data conversion

ASSIGN Set a value into a register. 34

BIT-PACK Pack Booleans into an integer register, or ASCII bytes from an

integer and concatenate into an ASCII string.

40

BIT-UNPACK Unpack bits of an integer register into Booleans. 40

COPY_DATA_

BLOCK

Copy block of registers from one RTDB to another. 41

EDGE DETECT Detect rising or falling edge of a register. 45

FORMAT Store a value into a string using a defined number format. 46

INDEXed GET Indirect read from an RTDB register. 47

INDEXed SAVE Indirect write to an RTDB register. 47

INTEGER to ASCII

BYTE

Convert integer value to printable ASCII representation. 47

LONG to REAL Convert long integer to REAL32 (floating point) number. 48

PACK TIME Pack date/time from 6 registers into long integer seconds. 49

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 30

REAL to LONG Convert REAL32 (floating point) number to long integer. 56

REVERSE [1,2,4]

BYTE WORD

Reverse bytes of integer value. 56

STRING DROP

PART

Drop a number of bytes from start or end of a string. 59

STRING GET PART Keep only a number of bytes from start or end of a string. 59

STRING HEADER Return bytes preceding a matching delimiter. 59

STRING LENGTH Return length of a string. 59

STRING TO

LOWER

Convert string to lowercase. 59

STRING TO UPPER Convert string to uppercase. 59

STRING TRAILER Return bytes following a matching delimiter. 59

STRING VALUE Convert string to a numeric value. 60

ZERO Scratchpad

Elements

Reset all 40 Scratchpad registers back to zero or NULL strings. 64

6.1.6 Director system access

CENTI-SEC

CLOCK

Returns the current system time in 1/100ths of a second. 40

CHANNEL

CONTROL

Enable or disable a Director master channel. Error!

Bookmark

not

defined.

DIAGLOG Enter a message in the Director’s diagostic log. 44

DIRECTOR NAME Get the Director Name from its configuration. 44

FORCE POD RTU

STATUS

Set the status of the Internal Master POD RTU. 45

GET COLUMN

FROM POLL

RECORD

Get a value from the Poll Table record that called this POD

routine, allows values to be passed into the POD.

46

GET TIME Get current Director system time. 46

MY RTU ADDRESS Get RTU address of Internal Master RTU running the POD. 49

RTU NAME Return RTU name from Director configuration. 57

SET RTU STATUS Set the communication status of an RTU in the Director. 58

SYSTEM

COMMAND

Issue a system call to a shell script or command line

function.

60

6.1.7 I/O board functions

PC-104 DS-DMM-

16-AT

Access I/O on the PC/104 DS-DMM-16-AT board. 50

PC-104 IN-8 Read digital I/O on the PC/104 IN-8 board. 50

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 31

PC-104 IN-16 Read digital I/O on the AIM104-IN16 board. 50

PC-104 MULTI-IO-

16se

Read I/O on the AIM104-MULTI/IO board (16 single-ended

analogs).

50

PC-104 MULTI-IO-8-

DIFF

Read I/O from the AIM104-MULTI/IO I/O board (8 differential

analogs).

51

PC-104 OUT-8 Write outputs to the AIM104-RELAY8/IN8 relay outputs. 51

PC-104 OUT-16 Write outputs to the AIM104-OUT16 digital outputs. 51

PC-104 TS-ADC16 Access I/O from the PC/104 TS-ADC16 board. 53

6.1.8 File access functions

ARCREAD Read an archive file in the filesystem. 37

ARCWRITE Write to an archive file in the filesystem. 38

ARCZERO Set of block of registers in a file to zero. 38

ARCCHKSUM Calculate a 16-bit checksum of a section of an archive file. 38

DATA LOGGER Log data to a file in the filesystem. 42

DUMP

SCRATCHPADS

Store the value of Scratchpad registers to a file. 45

TEXT FIND Find a string in an open file buffer. 61

TEXT FLUSH Free allocated memory from open and read of file. 61

TEXT OPEN Open a file for reading. 61

TEXT READ Read bytes from a file. 62

TEXT REMAINING Return number of unread bytes in buffer. 62

XML GET COUNT Count number of named elements in XML file. 63

XML GET FIELD Read one or more attribute/values from element in XML file. 63

XML NEXT FIELD Read next attribute/value from element in XML file. 63

6.1.9 Communication functions

ASYNC-IN Read data on an acscomm serial port. 38

ASYNC-OUT Send data to an acscomm serial port. 39

CHECK HTTPPOST Check the response of an HTTPPOST function. 41

Db9-Read Read CTS and DCD signals from serial port. 43

Db9-Write Write RTS and DTR signals to serial port. 43

HTTPPOST Send a POST message to an HTTP server. 46

MODBUS WRITE Send a Modbus write communication command. 48

MQtt SEND CMD Publish a message using MQTT protocol. 48

PARSE MQtt RBE Parse an MQTT RBE message. 49

PUBCONN Return connection status with MQTT broker. 54

PUBHOST Return index of which MQTT broker we are connected to. 54

PUBNUMQ Return number of pending MQTT messages to be delivered. 54

PUBLISH Publish an MQTT message to a broker. 54

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 32

PUBQUERY Check state of a message on the MQTT queue. 55

PUBWALK Force MQTT client to connect to each broker in its host list. 56

SegRecv Receive bytes on a serial port and pack them into a consecutive

RTDB registers.

57

SEGSEND Send bytes from consecutive RTDB registers to a serial port. 57

SEND

BIRTH/DEATH

CERTIFICATE

Send MQTT birth certificate or death certificate. 58

SUBSCRIBE TO

TOPIC

Issue MQTT subscription for a data topic. 60

SUBSCRIBED

RECV’d DATA

Receives raw MQtt packet payloads directly into RTDB registers. 60

TtysIn Read data on a ttyS serial port. 62

TTYSOUT Send data to a ttyS serial port. 62

6.1.10 Specialty functions

AGA3_1982 Perform AGA3 gas flow calculation. 37

DNP_CRC Calculate the CRC of a DNP3 message. 44

DNP_LOG Create an event in an RTDB event buffer, can be retrieved by

DNP3 (or other protocols that support events).

44

DNP_PULSE_AT_

RTDB

Remap DNP3 pulse command parameters into integer RTDB

registers.

44

NX_19_Fpv Perform NX-19 supercompressibility gas calculation. 49

PID-LOOP Perform a PID loop calculation. 53

PULSE FACTOR Integrate pulse counter with a K factor divisor. 56

SCRAMBLE Scramble (encrypt) or unscramble (unencrypt) a hex string. 57

TABLE-23B Calculate Table-23B relative density correction. 61

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 33

6.2 Commonly Used Functions

The following 19 functions are among the most commonly used functions.

6.2.1 + ADD Operand (Append Strings)

 Returns result of adding "Source Addr" data to Operand data. Strings are concatenated.

6.2.2 - SUBTRACT Operand (Remove Operand String occurrences from

Source String)

 Returns result of subtracting "Source Addr" data by the Operand data.

 If Source Data is String Data then....

 If Operand of Type STRING exists in Source String then it is eliminated from Source.

 If Operand of Type CONSTANT then the first '+N' (Positive Constant value) bytes are

eliminated from the Front of Result String.

 If Operand of Type CONSTANT then the first '-N' (Negative Constant value) bytes are

eliminated from the Tail of Result String.

6.2.3 * MULTIPLY Operand (Find Right Half of Operand String, Replace

with Left Half)

 Returns result of multiplying "Source Addr" data by Operand data.

 If parameters are Strings then Operand Data should be an even number of characters.

 The second half of the Operand string is scanned for matches in the Source Data.

 Each matching occurance is then replaced by the first half of the Operand string.

6.2.4 / DIVIDE BY Operand (Return 1st N (Operand-Value) of Source

String)

 Returns result of dividing "Source Addr" data by Operand data.

 If Source Data is String Data then:

 If Operand is of Type STRING then simply return first byte of Source String

 If Operand of Type CONSTANT then the first 'N’ bytes are returned from Source String.

6.2.5 MODULO DIVIDE by Operand (Return Last N (Operand-Value) of

Source String)

 Returns result of MODULO dividing "Source Addr" data by Operand data.

 Reals return fractional portion of result.

 If Source Data is String Data then....

 If Operand is of Type STRING then simply return last byte of Source String

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 34

 If Operand of Type CONSTANT then the last 'N' (where is Contant value) bytes are

returned from Source String.

6.2.6 > GREATER THAN Operand? (Including String Compare)

 Returns a TRUE (or -1) if "Source Addr" data is greater than Operand data.

 Also compares String using strcmp(). "-1" saved for TRUE and "0" for FALSE when the

Result is cast as a String.

6.2.7 < LESS THAN Operand? (Including String Compare)

 Returns a -1 (TRUE) if "Source Addr" data is less than Operand data.

 Also compares String using strcmp(). "-1" saved for TRUE and "0" for FALSE when the

Result is cast as a String.

6.2.8 == EQUAL TO Operand? (Including String Compare)

 Returns a -1 (TRUE) if "Source Addr" data is equal to Operand data.

 Also compares String using strcmp(). "-1" saved for TRUE and "0" for FALSE when the

Result is cast as a String.

6.2.9 != NOT EQUAL TO Operand? (Including String Compare)

 Returns a -1 (TRUE) if "Source Addr" data is NOT equal to Operand data.

 Also compares String using strcmp(). "-1" saved for TRUE and "0" for FALSE when the

Result is cast as a String.

6.2.10 ASSIGN Operand to Result (Ignore Source Addr)

 Put something into the Result from Operand while ignoring Source Addr. The Operand Data

Type sets the function data type for saving into the Result Address.

6.2.11 GOTO LABEL if Src is TRUE/Non-Zero, Operand=”Matching Label”

 If "Source Addr" data is non-zero (Boolean/integer/real) then execute a search (non-case

sensitive) through all rows containing the LABEL Function for matching Operand

Strings. If the Label is found, jump to that POD row to continue processing functions.

 Strings are not allowed in the Source Addr.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 35

6.2.12 NOT GOTO LABEL if SourceValue is FALSE/Zero,

Operand="Matching Label"

 If "Source Addr" data is zero (Boolean/integer/real) then execute a search (non-case

sensitive) through all rows containing the LABEL Function for matching Operand

Strings. If the Label is found, jump to that POD row to continue processing functions.

 Strings are not allowed in the Source Addr.

6.2.13 LABEL ONLY in Operand as a STRING (Src and Result ignored)

 "Source Addr" is ignored and GOTO LABEL searches for matching Operand String. Special

string used by FOR_LOOP is “ENDLOOP?” where ‘?’ can range from 0 to 9. The

‘Operand Type’ must be set to “STRING” and the string must be unique in this POD.

6.2.14 FOR_LOOP Src=Enbl Oprnd=5CfgRgs 0=Index, 1=Init&LoopVal,

2=Limit, 3=Stop@(0 '=', 1 '>', -1 '<'), 4=IncrmentVal

 Index : Can range from 0 to 9. Loop block terminus is LABEL with “ENDLOOP?” where ‘?’ is

also from 0 to 9. At ENDLOOP the Value is incremented by ‘Increment’ and compared

as EQUAL, GREATER THAN or LESS THAN. If not, then jump back to row following

FOR_LOOP statement. This is only implemented when the FOR_LOOP has been

enabled.

 Init&LoopVal : Must be given a starting value before FOR_LOOP statement and then it is

incremented at the “ENDLOOP?” label.

 Limit : Value to which ‘Init&LoopVal’ is compared for loop termination.

 StopType : Determines comparison used between ‘Limit’ and ‘Init&LoopVal’. 0 for Equal, 1 for

‘Init&LoopVal’ being Greater Than ‘Limit’, -1 for ‘Init&LoopVal’ being Less Than ‘Limit’.

 Increment : Positive or Negative delta amount added to ‘Init&LoopVal’ at “ENDLOOP?” label.

 NOTE: All FOR_LOOP - “ENDLOOP?” pairs must be unique in PODs and SUB_PODs.

 The 5CfgRegs must be INTEGERS. REAL32 and STRINGs are disallowed as the 5

CfgRegs.

6.2.15 JUMP RELATIVE if Src is TRUE by Operand Rows (+/-)

 If "Source Addr" data is non-zero (integer/real) then move by the number of rows in the

Operand data. Negative numbers jump to a previous row, positive numbers jump to a

later row.

 Strings are not allowed in the Source Addr.

6.2.16 GO_SUB_POD Subroutine If Src=Enable Operand=POD_Index to

drop into POD Subroutine

 The same Scratchpad variables are used by the caller and called PODs.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 36

 Subroutines can be nested to a depth of 15 calls. The called POD must have one or more

‘RETURN’ statements to return to the calling POD.

6.2.17 RETURN If called by other POD then Return to Caller POD’s Row...

Src=Enable

 The same Scratchpad variables are used by the caller and called PODs. FOR_LOOP

indexes are also shared.

6.2.18 EXIT Stop this POD processing Src=Enable

 Return to normal Virtual Master Polling mode if value in Source Addr is non-zero.

 Operand and Result Addr are ignored.

6.2.19 NOT EXIT Stop this POD processing if SourceValue=FALSE or ZERO

 Return to normal Virtual Master Polling mode if value in Source Addr is zero.

 Operand and Result Addr are ignored.

6.2.20 RUN POD(nnn) if SrcAddr=TRUE where Operand=POD_INDEX (1 to

9999). POD won’t return.

 If "Source Addr" data is non-zero (integer/real) then jump without return to POD(index).

 Strings are not allowed in Source Addr.

 The same Scratchpad variables are used by the caller and called PODs.

6.2.21 ** COMMENT ** ... 11 Chars in Operand. Not a LABEL (Src and

Result Ignored)

 Whole row ignored by Interpreter. Type up to 11 characters into Operand and any number in

Src/Result columns.

6.3 Other Functions

The remaining functions are listed in approximately alphabetical order.

6.3.1 ABSOLUTE VALUE Src=Value (Operand is ignored)

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 37

6.3.2 AGA3_1982 Src=Enbl, Oper=10PtrRgs-> 0=Pipe 1=Orif 2=Tb 3=Pb

4=SG 5=SH 6=DP 7=LT 8=LP 9=Fpv ==> SCFH

 The Operand is an address to 10 Floating point values. They are Pipe Diameter(inches),

Orifice ID(inches), Temperature-Base(degF), Pressure-Base(psig), Specific Gravity,

Specific Heat, Differential Pressure (inch-H20), Line Temperature(degF), Line

Pressure (psig), Supercompressibility Factor.

 The Supercompressibility can be calculated using the NX_19 function described in a lower

section.

 The result is the Flowrate in Standard Cubic Feet per Hour.

6.3.3 ARCCOS(x) Src=Real32-(-1 to +1) Operand=Ignored Returns REAL32

ArcCOS(x)

 Source Addr is a floating point number -1 to 1

 Result is also floating point as arccosine of source.

 Operand is ignored.

6.3.4 ARCSIN(x) Src=Real32-(-1 to +1) Operand=Ignored returns REAL32

ArcSIN(x)

 Source Addr is a floating point number -1 to 1

 Result is also floating point as arcsine of source.

 Operand is ignored.

6.3.5 ARCTAN(x) Src=Real32-(-oo to +oo) Operand=Ignored returns

ArcTAN(x)

 Source Addr is a floating point number.

 Result is also floating point as arctangent of source.

 Operand is ignored.

6.3.6 ARCREAD Src=Enbl Opernd(AdrOf5CfgRegs) [0]=NameAdr 1=Offst

2=Rtu 3=Rtdb 4=Cnt

 "Source Addr" data is the “enable”.

 "Operand" data is a reference to a block of registers used to Read an Archive file.

 1st Register=RTDB Address containing the string name of the archive (e.g. /tmp/data1.arc)

(must be a STRING-256 RTDB element)

 2nd Register=Byte offset into Archive 0 to N

 3rd Register=RTU Number to Associate with Archive in associated Internal-Channel.

 4th Register=RTDB Starting register to receive the data from the Archive

 5th Register=Count of RTDB Registers

 Returns a negative value if an error is encountered, or zero for success.

 Strings are not allowed in Source Addr or Operand.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 38

6.3.7 ARCWRITE Src=Enbl Opernd(AdrOf5CfgRegs) [0]=NameAdr 1=Offst

2=Rtu 3=Rtdb 4=Cnt

 "Source Addr" data is the “enable”.

 "Operand" data is a reference to a block of registers used to Write to an Archive file.

 1st Register=RTDB Address containing the string name of the archive (e.g. /tmp/data1.arc)

(must be a STRING-256 RTDB element)

 2nd Register=Byte offset into Archive 0 to N

 3rd Register=RTU Number to Associate with Archive in associated Internal-Channel.

 4th Register=RTDB Starting register used to write data to the Archive

 5th Register=Count of RTDB Registers (Only one String-32 or String-256 can be written at

a time)

 Returns a negative number if an error occurred, or zero if successful.

 Strings are not allowed in Source Addr or Operand.

6.3.8 ARCZERO Src=Enbl Opernd(AdrOf3CfgRegs) [0]=NameAdr 1=Offst

2=Cnt

 "Source Addr" data is the “enable”.

 "Operand" data is a reference to a block of registers used to Zero in an Archive file.

 1st Register=RTDB Address containing the string name of the archive (e.g. /tmp/data1.arc)

– must be a STRING-256 RTDB element

 2nd Register=Byte offset into Archive 0 to N

 3rd Register=Count of bytes

 Returns a negative number for an error, or zero for success.

 Strings are not allowed in Source Addr or Operand.

6.3.9 ARCCHKSUM Src=Enbl Opernd(AdrOf3CfgRegs) [0]=NameAdr

1=Offst 2=Cnt

 "Source Addr" data is the “enable”.

 "Operand" data is a reference to a block of registers used to Zero in an Archive file.

 1st Register=RTDB Address containing the string name of the archive (e.g. /tmp/data1.arc)

(must be a STRING-256 RTDB element)

 2nd Register=Byte offset into Archive 0 to N

 3rd Register=Count of bytes to calculate a check sum (CRC-16)

 Returns the 16 bit checksum for the range of the archive.

 Strings are not allowed in Source Addr or Operand.

6.3.10 ASYNC-IN Src=Enbl Opernd=PtrAdr 5CfgRgs [0]=ComPort 1=MxLen

2=EndChr 3=TmOut 4=Demrk Result=TypeString

 (Using /dev/acscomm_ serial ports)

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 39

 Source Addr value is a reference to five Registers in the RTDB.

 1st Register=ComPortNdx 0 to N.

 2nd Register=Maximum Buffer Length.

 3rd Register=End Message Marker. If -1 then no end marker

 4th Register=Timeout to first byte in milliseconds

 5tht Register=Demark timer in msec for last byte

 The Result Type is returned as a STRING

 Uses Custom Serial /dev/acscomm_ driver

6.3.11 ASYNC-OUT (acscomm) Src=Enbl Opernd=PtrAdr 3CfgRgs

[0]=ComPort [1]=SendLength [2]=StringAdr...Result=Integer

 (Using /dev/acscomm_ serial ports)

 Operand value is a reference to three Registers in the RTDB.

 1st Register=ComPortNdx 0 to N.

 2nd Register=Character Send Length.

 3rd Register=RTDB Address of String to send

 The Result Type is returned as an Integer

 Uses Custom Serial /dev/acscomm_ driver

6.3.12 BIT-AND Operand (Strings replace all "<~Or?>" in SrcString with

Operand String)

 Integers will return result of bit anding"Source Addr" data with Operand data.

 Strings are handled for Search/Replacement with BIT-OR. BIT-AND will search for all

occurrences of “<~Or?>” text inside Source String and replaces the matching area with

the Operand string.

 BIT-OR will previously have placed one or more “<~Or?>” strings in the original text.

 REALs are ignored.

6.3.13 BIT-OR Operand (Strings find all OperString in Src and replace with

"<~Or?>")

 Integers will return result of bit or-ing"Source Addr" data with Operand data.

 Strings are handled for Search/Replacement with BIT-AND. BIT-OR will search for all

occurrences of Operand String inside Source String and replaces the matching area

with six characters “<~Or?>”. Then you can use the BIT-AND to replace any “<~Or?>”

text with new text.

 REALs are ignored.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 40

6.3.14 BIT-PACK Src=>Start of Booleans Operand=1 to 16 bits to pack

 Pack Booleans into an integer register, or ASCII bytes from an integer and concatenate into

an ASCII string.

 Source Addr is source register of Booleans.

 Operand is the number of bits to pack (1 to 16) if the source i.

 If the source is Boolean and the destination is an integer, the Boolean bits are packed and

the Result is stored into the integer register. The Operand is the number of bits to

pack (1 to 16).

 If the source is integer and the destination is a string, the ASCII bytes of the integers are

converted to their ASCII representations and the Result is stored in the String register.

The Operand is the number of integer registers to convert. (For instance, an integer

containing hex values x3031 becomes a string “01”).

6.3.15 BIT-UNPACK Src==>Integer Value Operand=1 to 16 bits to unpack to

1 or more Result Booleans.

 Unpack bits of an integer register into Booleans.

 Source Addr is source register of integer value.

 Operand is the number of bits to unpack (1 to 16).

 Result is stored into a series of Boolean registers.

6.3.16 BIT-XOR Operand (Strings find 1st OperString in Src and replace with

"<~Or?>")

 Integers will return result of bit exclusive or-ing"Source Addr" data with Operand data.

 Strings are handled for Search/Replacement with BIT-AND. BIT-XOR will search the first

occurrence of Operand String inside Source String and replaces the matching area

with six characters….. “<~Or?>”. Then you can use the BIT-AND to replace the

“<~Or?>” text with new text.

 REALs are ignored.

6.3.17 CENTI-SEC CLOCK Ignore Source and Operand. Free running

centisecond Clock

 Returns the current system time in centiseconds (1/100ths of a second) as an SINT32 value.

 Source Addr and Operand are ignored.

 This can be used, for instance, to set a timer for a certain event. Read the CENTI-SEC

CLOCK and add 500 (five 1/100ths of a second) for 5.00 seconds from the current

time. Then the POD can continue to read the CENTI-SEC CLOCK function, and when

the system clock is greater than the stored value, the timer has effectively expired, and

a defined action can be performed.

 The system clock can also be used to store and/or publish data with a date/timestamp.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 41

6.3.18 CHANNEL CONTROL Source=Chann(0 to 15), Operand=0-

Disable,NonZero-Enable : Return NewMode

 Enable or disable a Master Channel, which will start or stop the Scan Table polling entries for

the channel.

 “Source Addr” contains the channel number

 “Operand” contains 0 to disable, or a non-zero positive value to enable.

 Returns a 0 for the new disabled state, a negative number for an error, or an echo of the

Operand for the new enabled state.

6.3.19 CHECK HTTPPOST Src=Enable, Opernd=Ignored, Returns String

Message

 Check the response of an HTTPPOST function.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Result is a String message returned from the HTTP server in response to POST message.

 Operand is ignored.

6.3.20 COPY_DATA_BLOCK Src=Enable, OprndCnst=> Rg[0]=Chn 1=Rtu

2=Rtdb 3=Cnt 4=Chn 5=Rtu 6=DstRtdb

 This is one of the few functions that access other Master Channel's/RTU's data.

 If "Source Addr" data is non-zero then the "Operand" data is used as a local RTDB starting

Register Address.

 The function then reads 7 values starting at this address and interprets them as...

 1st Register=Source Channel Number (0 to 15)

 2nd Register=Source RTU Number

 3rd Register=Source Data Starting Register Address

 4th Register=Source Data Count

 5th Register=Destination Channel Number (0 to 15)

 6th Register=Destination RTU Number

 7th Register=Destination Data Starting Register Address (should be same data type as

Source)

 Returns a negative value for an error, or the number of registers copied.

 Strings are not allowed in Source Addr or Operand.

 Cannot copy data from ScratchPad elements or save to ScratchPad elements.

6.3.21 COSINE(x) Src=Real32-Radians Operand=Ignored Returns REAL32

cosine(x)

 Source Addr is a floating point number of angle in radians.

 Result is floating point as cosine of source value.

 Operand is ignored.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 42

6.3.22 DATA LOGGER Src=Enbl, Oprnd=PtrCfg-7 0=AddrStr256(Dir/File)

1=DataAddr 2=Count(Max=125) 3=MaxFiles 4=CSV? 5=w/HHMMss

6=Reserved

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 The Operand value is the starting address to Six Configuration parameters with a seventh

register used for persistent data used between calls. These registers should be either

UINT16 or SINT32/UINT32 data types.

 The first parameter is the register address of a STRING-256 data type containing the

Directory path and root filename. Examples would be

"/tmp/cflash/MeterLogs/IonMeter1" and "/tmp/usb/Floats/Voltages". The Data Logger

function will verify that the directories exist and will append more information to the file

name consisting of the Year-Month-Day, Starting Data Address by Number of Data

Items, Time Stamp mode, and either ".csv" or ".bin". For example the first file name

could be "../IonMeter1~2012-12-25_30001x012_TS.csv" for December 25th 2012, data

from 30001 through 30012 saved as comma separated values with a Time Stamp.

 The second parameter is the starting data address from the Internal Master RTU's RTDB

running the POD which is to be logged. This can range from 1 to 60000.

 The third parameter is the count of data values to be logged and is limited to 125 values.

 The fourth parameter is Maximum number of files to be stored in the destination directory

portion of the file name. At midnight the logger will see if the oldest file in the

destination directory should be removed. Plus any “FILENAME*.csv” or

“FILENAME*.bin” file will be gzip-compressed and renamed to either

“FILENAME*.csv.mv.gz” or “FILENAME*.bin.mv.gz”. When the user copies the

compressed files to a Windows PC then the freeware program “7-Zip” can uncompress

them. The ‘.mv” is appended to prevent compressing a continuing live log file.

 The fifth parameter is zero if the files are stored as binary records and 1 if the data is to be

stored as comma separated values (future versions might store XML formatted

records). If in binary mode then Boolean and INT8 registers will occupy one byte.

INT16 occupy two bytes, INT32 and REAL32 use four bytes, STRING-32 use 32 bytes

and STRING-256 uses 256 bytes. Data is ‘Little Endian’. CSV file records are

terminated with a “,EOL” (for End Of Line) plus a ‘NEW LINE’.

 The sixth parameter determines if a Time Stamp is to be prepended to each record. CSV

records will have the HH,MM,SS,mSec, values in military mode (0-23 hours). The

Binary mode time stamp will be an INT32 number of seconds since Jan 1, 1970

followed by an INT32 microseconds. The File Name will either have “_TS” or “_noTS”

whether the records are Time Stamped or not Time Stamped. A sample CSV record

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 43

with Time-Stamp could appear as (at 13:23:09.774 or 1:23 PM) with PI, Feet-In-Mile,

and Body Temperature as: 13,23,9,774,3.14,5280,98.6,EOL

 The seventh parameter will be reserved for the logger to persist some information such as

whether the Midnight Logic has been executed for the base file name. If set to zero on

then the Data Logger will attempt to make the destination Directory required by the

path name. If set to 128 (8th bit) then it will assume the destination Directory

(pathname) is already created. The bottom 6 bits record the hour of the last time the

file was written. The 7th bit is set the first time Midnight is detected and cleared when

it is no longer Midnight.

NOTE 1: Be careful to use a unique File name for each Starting Data point or else the file

management function will delete more files associated with the lower addressed set of

data. A TILDE (~) character separates the end of the base File Name from the

appended Date Stamp and other appended characters.

NOTE 2: The storage device must be mounted into a subdirectory of the /tmp/ folder (Ram Drive

area). A customer’s startup script can be modified to automatically mount /dev/sda1

(USB Flash Drive) into /tmp/usb/. If no storage device is mounted into /tmp/ then any

logging will be written to the Ram Drive Area to prevent damaging the on-board

FLASH memory.

6.3.23 Db9-Read Src=ComPort Operand=Ignored Result=Bit0=CTS 1=DCD

8=Error

 Read CTS and DCD signals from a serial port.

 Source Addr is the number of the serial port, using native Linux serial “/dev/ttyS_” driver.

 Result is an integer with bits set according to the current state of handshaking signals,

bit0=CTS, bit1=DCD (True indicates signal is activated), bit8=error reading port.

6.3.24 Db9-Write Src=ComPort Operand=BitMask Bit0=RTS Bit1=DTR

Result...0=OK else Fail

 Write RTS and/or DTR signals to a serial port.

 Source Addr is the number of the serial port, using native Linux serial “/dev/ttyS_” driver.

 Operand is a bit mask, allowing only one or the other signal to be written, or both. Bit0=RTS,

Bit1=DTR (True indicates to write the signal, False does not write)

 Result is 0 if output is successful, or non-zero if unsuccessful.

6.3.25 DELAY If Src=TRUE then sleep Operand data Milliseconds

 If "Source Addr" data is non-zero (integer/real) then sleep Operand data milliseconds.

 Strings are not allowed in Source Addr.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 44

6.3.26 DIAGLOG() Operand + Source Value as Strings

 Data is sent to /tmp/director/DirectorFifo

 If "Source Addr" data type is INTEGER then print Operand string, Int(SrcAddr), SrcValue %d

 If "Source Addr" data type is REAL then print Operand string, IEEE(SrcAddr), SrcValue %g

 If "Source Addr" data type is STRING then print Operand string, String(SrcAddr),

SrcValue %s

6.3.27 DIRECTOR NAME from Apex System Object as from 'hostname'

 "Source Addr" and “Operand” are ignored. The result is cast to a STRING data type.

 ‘White-space’ in the name is replaced with the Underscore ‘_’ character. Uses ‘hostname’.

6.3.28 DNP_CRC Source=StrtUINT8, Operand=Count-UINT8 : Result=CRC

(and into UINT8 buffer)

 Calculate the CRC of a DNP3 message.

 Source Addr is starting UINT8 register of a sequence of bytes of a DNP3 message.

 Operand is UINT8 count of byte registers.

 Result is the CRC-16 word of the DNP3 byte array.

6.3.29 DNP_LOG Src=Enbl, Oper=2PtrRgs-> 0=EventBuf, 1=RtdbAdr,

Result=0 Else Negative

 The Operand is an address to 2 Integer values.

 The first parameter is the RTDB address of an Event buffer normally set to 50001 up to

50004. Each Event buffer can hold up to 100 Events. The DNP3 Slave is the only

service in the Director that can read/use this information. An Event is comprised of

four 32-bit values. The first of the four holds the originating RTDB Data Address and

Data type. The second holds the actual data value. The third element is the Linux 32-

bit time value (seconds since 1970) and the fourth element has the number of

microseconds offset into the seconds value.

 The second parameter is the RTDB address that should be logged into the Events buffer.

6.3.30 DNP_PULSE_AT_RTDB SrcAddr=Ignored : Operand=RtdbAddress

Associated with 1st Pulse Command : Rslt=Echo of Operand or -1 if error

 Remap DNP3 pulse command parameters into integer RTDB registers. When a DNP3 pulse

command is received on a DNP slave channel and passed to a master channel that

supports pulse commands, the pulse parameters (on time, off time, etc.) are passed

through. But if the DNP slave channel points to an internal RTDB register, these

values would be otherwise lost, because the RTDB doesn’t know how to deal with

pulses. This DNP_PULSE_AT_RTDB function allows information about the pulse

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 45

commands to be stored into RTDB registers, where they may be used by other

functions if necessary (such as echoing the pulse command to a built-in digital output

board, for instance).

 Source Addr is ignored.

 Operand is an RTDB address of integer registers that should be associated with the first

Pulse DNP3 point. Beginning at this integer register, consecutive sets of ?? registers

will contain information about the DNP3 pulse commands received on the DNP slave

channel.

 Result is an echo of the Operand, or -1 if an error.

6.3.31 DUMP SCRATCHPADS to /tmp/director/S_PADpp.rr.txt where 'pp' is

PodNdx & 'rr' is Row if Src=Enable

 Store the value of all 40 Scratchpad registers to a file. The file name is hard-coded to

“/tmp/director/S_PADpp.rr.txt”, where pp is the number of the POD running this

function, and rr is the row number of the function.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand and Result registers are ignored.

6.3.32 EDGE DETECT Src=BoolInput, Operand=Instance(0 to 9 RisingEdge,

-1 to -9 Falling Edge)

 Detect the rising or falling edge of the value of a Boolean register.

 Source Addr is the Boolean register to monitor.

 Operand is a numeric instance of a register to monitor, where the previous value of the

Boolean is stored from the previous execution of EDGE DETECT. Up to 10 Boolean

registers can be monitored (only 9 if using falling edge). Operand is positive (0 to 9) to

detect rising edge, or negative (-1 to -9) to detect falling edge.

6.3.33 EXP(x) Src=Real32-InputValue Operand=Ignored Returns REAL32 'e

to the x'

 Calculate the exponential of a source value.

 Source Addr is the floating point value of the input (x).

 Result is a floating point containing the (ex) value.

 Operand is ignored.

6.3.34 FORCE POD RTU STATUS Src=Enbl Oprnd=ThisRtuStateState

(0=Good,2=Bad) Return:0=Ok, -1=Failed

 Set the associated Internal Master RTU to the State value in the Operand.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is the desired state to which the Internal Master should be set (0=good, 2=bad).

 Result is 0 if successful, or -1 if an error.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 46

6.3.35 FORMAT Specifier 'C' Printf in Operand for SrcData, Result should be

UINT16,STR-32,STR-256

 Using Operand string formats such as "%d", "%f", "%s" (without apostrophes) save Result of

"Source Addr" Data value.

 Row is cast to STRING data type.

6.3.36 GET COLUMN FROM POLL RECORD Src=Ignored : Operand=>

0=SrcChn 1=SrcRtu 2=SrcAdr

 This function is used to pass parameters to a POD routine by placing values into any column

other than the ‘Src Type” and “Src Count” columns. Normally zeros (0) are placed in

these four columns when calling a POD. Set the ‘Operand’ value to a ‘2’ to obtain the

value in the ‘Src Data’ cell or a ‘5’ to obtain the value in the “Dest Data” column. The

fourth and fifth columns are always filled with necessary values but can still be read

with this function.

6.3.37 GET TIME Src/Oprnd=Ignored Result> INT16[0-

6]=YYYY,MM,DD,HH,MM,SS,ms INT32=1970+Secs STRING=YYYYMMDD-

HHmmSS.ds

 If Result is cast to INT16 then the time will be saved to seven consecutive registers with

YYYY, MM, DD, HH, mm, SS, mSec

 If Result is cast to INT32 then the 32 bit Linux Seconds since Jan. 1, 1970

 If Result is cast to REAL32 then two registers will be affected. The first will contain

YY*10000.0 + MM*100.0 + DD. The second will contain HH*10000.0 + mm*100.0 + SS

 If Result is cast to STRING then the Result will be YYYYMMDD-HHmmSS.ds (ds=1/10th

seconds)

6.3.38 HTTPPOST Src=Enable Opernd=2PtrCfgs [0]=StartAdrOfStrings

1=CountofStrings

 If "Source Addr" non-zero (integer/real) then attempt HttpPost. The Operand references the

starting address of two configuration parameters:

 1st Register=String Starting Register Address

 2nd Register=Number of String Registers to send to HttpPost process.

 This uses the “POST_XML_FILE=1” parameter in the /usr/director/bin/customer file to

determine if the Strings should be used as the “File Name” to Post or as the verbatim

ASCII payload to Post.

 Returns an Integer Result of zero if successful

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 47

6.3.39 INDEXed GET : SourceAddr value is RegAddr used as SrcData=>

ResultAdr : Operand Ignored

 "Source Addr" data is used to read RTDB for actual Data. Operand is ignored.

 Strings containing a new register address with be converted to integer value.

6.3.40 INDEXed SAVE : Src=Data2Save, Opernd=AddressOfSave,

Result=Overidden by Operand

 "Source Addr" contains the data to be Saved

 "Operand" contains the destination to save Source Data. It will overide the "Result Addr"

 "Result Addr" is overidden by "Operand"

6.3.41 INTEGER to ASCII BYTE (Ignore Source Address, CHR$(Operand

Value))

 Convert the decimal value contained in ‘Operand’ and convert the output to the appropriate

single character string. For example if the Operand contains a ‘13’ or ‘0x0d’ then the

output is a single byte string representation of the CARRIAGE RETURN character.

Common characters are…

 0 or 0x00 NULL (Use this to create NULL Strings)

 7 or 0x07 BELL

 9 or 0x09 TAB

 10 or 0x0a LINEFEED

 13 or 0x0d CARRIAGE-RETURN

 27 or 0x1b ESCAPE

 32 or 0x20 SPACE

 36 or 0x24 DOLLAR-SIGN

 124 or 0x7c VERTICAL-BAR

6.3.42 INVERT Bool=Not-Bool, IntBits=iNTbITS, Real=1.0/Real, String=gnirtS

(SrcVal-Cast-to-ResultType) Ignore-Operand

 The Source Data is first cast to the ‘Cast Result As’ type before being inverted.

 For Boolean Results: If "Source Addr" data was TRUE, then Result is FALSE, and vice versa.

 For CHAR/SHORT/LONG Result, the data bits are inverted 1s to 0s and 0s to 1s.

 For REAL32 result the Result is 1.0 divided by the "Source Addr" data.

 For STRING result the Source string is reversed.

 The Operand is ignored.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 48

6.3.43 LOG(x) Src=Real32-InputValue Operand=Ignored Returns REAL32

NaturalLog(x)

 Calculate the natural logarithm of a number.

 Source Addr is the floating point value of the source (x).

 Returns floating point of ln(x).

 Operand is ignored.

6.3.44 LONG to REAL Copies 32 bits from Source Value to 32 bits of a

Real32 value.

 Convert long integer to REAL32 (floating point) number as 4-byte memory copy, in case a

floating point value was stored improperly into a long integer register. This allows the

value to be access as a true floating point.

 Source Addr is the source long integer value.

 Result is the floating point output.

 Operand is ignored.

6.3.45 MODBUS WRITE Src=Enable Opernd=>PtrAdr 5-CfgRgs [0]=SrcData

1=Cnt 2=DstChn 3=Rtu 4=DataAdr

 Must use Integer parameters.

 Source Adr is the Enable. The Operand is a reference to a group of 5 consecutive

parameters.

 They are....

 1st Register=Source Data Address from Local RTDB

 2nd Register=Number of Registers

 3rd Register=Destination Channel (0 to 15)

 4th Register=Destination RTU

 5th Register=Destination Data Address

 If successful then return the number of registers written.

 Will not write if too many pending inter-process communication messages pending in

destination protocol.

 Cannot use ScratchPad elements as SrcData values to be written to Destination RTU.

6.3.46 MQtt SEND CMD Src=Enbl, Opernd=CfgReg-5 0=TopicAdr

1=DataAddr 2=DataCount 3=QOS 4=PRIority : Return Handle

 Publish a message using the MQTT protocol.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is a register pointing to 5 integer registers with parameters of the function.

 1st: Pointer to the String register containing the Topic on which to publish.

 2nd: Starting register of data to be published.

 3rd: Count of registers to be published.

 4th: Quality of service to publish on (0-2).

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 49

 5th: Priority of the publish: 0=Low, 1=Medium, 2=High

 Returns the MQTT “handle” for this publication, which can be used by the PUBQUERY

function to check the status of the publication.

6.3.47 MY RTU ADDRESS Returns INTEGER

 Returns the Internal Master RTU Address running this instance of POD.

 Source Addr and Operand are ignored.

6.3.48 NX_19_Fpv Src=Enable, Oprnd=5PtrReg-> 0=Temp 1=Press 2=SpGrv

3=%CO2 4=%N2 ==> Fpv

 The Operand is an address to 5 Floating point values. They are Temperature (degF),

Pressure (psig), Specific Gravity(0.5 to 0.7), Mole%-CO2 and Mole%-N2. The result is

the supercompressibility factor (around 1.0).

6.3.49 PACK TIME Src=Enbl Oprnd=PtrCfg-6 YY,DD,MM,HH,MM,SS :

RETURN SecondFrom1970

 If "Source Addr" data is non-zero (integer/real) then Operand is used as Address of 6

Parameters: Year (from1900), Month, Day, Hour, Minutes and Seconds.

 Returns number of seconds since January 1, 1970.

6.3.50 PARSE MQtt RBE Data Src=Enbl, Opernd=CfgPtr-3 0=CountOfTopics

1=Topic_Addr 2=DestChan-Rtu-DataMin/Max_Addr(X4) : Return Sequence

Number

 Parse an MQTT RBE message received from a broker via a subscription topic.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is a pointer to three registers with parameters of the function:

 1st: Count of MQTT topics that will be parsed by this function.

 2nd: Pointer to the first of consecutive String registers (based on “Count”) containing the

MQTT topics to be parsed.

 3rd: Pointer to the first of four integer registers, containing the destination of the data being

parsed.

 1st register: Destination channel

 2nd register: Destination RTU address of RTDB

 3rd register: Minimum address in the payload to save into the RTDB.

 4th register: Maximum address in the payload to save into the RTDB. The minimum

and maximum addresses allow you to filter out only a certain set of registers in the

MQTT RBE payload.

 For instance, an MQTT RBE payload might contain 100 Boolean registers and 100

holding registers, but you only want to parse 5 Booleans and 5 integers in the payload.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 50

To do this, include two String registers containing the same MQTT topic, and two sets

of 4 registers defining the range of points to parse (such as min=10001, max=10005;

and min=30001, max=30005). All other points in the RBE packet will be discarded.

 Returns the sequence number of the RBE packet. Sequence numbers from a given

Director’s RBE packets are sequential integers.

6.3.51 PC-104 DS-DMM-16-AT SrcAs5Addr=>Rg[0-4]=Ao(1-4)+DigOut8 :

Operand=CardPortAdr : Rslt=Regs[0-21] DIs,AIs,CIs,Brd-ID

 Access I/O from the Diamond Systems DS-DMM-16-AT board board.

6.3.52 PC-104 IN-8 Src=Ignored Operand=CardPortAdr : Returns 8 Bit

Packed Integer

 Read 8 Discrete Inputs from PC-104 IN-8 card addressed as Operand Data.

 Returns INTEGER packed with 8 bits. Use BIT UNPACK for individual RTDB bits.

6.3.53 PC-104 IN-16 Src=Ignored Operand=CardPortAdr : Returns 16 Bit

Packed Integer

 Read 16 Discrete Inputs from PC-104 IN-16 card addressed as Operand Data.

 Returns INTEGER packed with 16 bits. Use BIT UNPACK for individual RTDB bits.

6.3.54 PC-104 MULTI-IO-16se SrcAs2Addr=>Rg[0]=Ao1 Rg[1]=Ao2

Operand=CardPortAdr Rslt=Regs[0-20]

 Source Addr value is a reference to two Registers in the RTDB (e.g. use 40001 or 40003,

etc).

 The first is AnalogOut-1 and the second is AnalogOut-2. The Operand contains the PC-104

card address. Add 0x30000000 to the address on a Director-Z. Saves data to 21

consecutive registers starting at ResultAdr. They are:..

 1st Register=8 Direcrete Input packed bits

 2nd Register=Analog Input 1 (Single Ended)

 3rd Register=Analog Input 2

 4th Register=Analog Input 3

 5th Register=Analog Input 4

 6th Register=Analog Input 5

 7th Register=Analog Input 6

 8th Register=Analog Input 7

 9th Register=Analog Input 8

 10th Register=Analog Input 9

 11th Register=Analog Input 10

 12th Register=Analog Input 11

 13th Register=Analog Input 12

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 51

 14th Register=Analog Input 13

 15th Register=Analog Input 14

 16th Register=Analog Input 15

 17th Register=Analog Input 16

 18th Register=Counter Input 1 (1st DI) … Up to 10 Hertz

 19th Register=Counter Input 2 (2nd DI)

 20th Register=Counter Input 3 (3rd DI)

 21st Register=Counter Input 4 (4th DI)

 The POD only supports one Multi-IO card.

6.3.55 PC-104 MULTI-IO-8-DIFF SrcAs2Addr=>Rg[0]=Ao1 Rg[1]=Ao2

Operand=CardPortAdr Rslt=Regs[0-12]

 Source Addr value is a reference to two Registers in the RTDB (e.g. use 40001 or 40003,

etc).

 The first is AnalogOut-1 and the second is AnalogOut-2. The Operand contains the PC-104

card address. Add 0x30000000 to the address on a Director-Z. Saves data to 13

consecutive registers starting at ResultAdr. They are:..

 1st Register=8 Direcrete Input packed bits

 2nd Register=Analog Input 1 (Differential Measurements)

 3rd Register=Analog Input 2

 4th Register=Analog Input 3

 5th Register=Analog Input 4

 6th Register=Analog Input 5

 7th Register=Analog Input 6

 8th Register=Analog Input 7

 9th Register=Analog Input 8

 10th Register=Counter Input 1 (1st DI) … Up to 10 Hertz

 11th Register=Counter Input 2 (2nd DI)

 12th Register=Counter Input 3 (3rd DI)

 13th Register=Counter Input 4 (4th DI)

 The POD only supports one Multi-IO card.

6.3.56 PC-104 OUT-8 Src=8-PackedBits Operand=CardPortAdr

 Write 8 Discrete Outputs to PC-104 RELAY-8 card addressed as Operand Data.

6.3.57 PC-104 OUT-16 Src=16-PackedBits Operand=CardPortAdr

 Write 16 Discrete Outputs to PC-104 OUT-16 card addressed as Operand Data.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 52

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 53

6.3.58 PC-104 TS-ADC16 SrcAs5Addr=>Rg[0-4]=Ao(1-4)+DigOut :

Operand=CardPortAdr : Rslt=Regs[0-21] DIs,AIs,CIs,Brd-ID

 Access I/O from the Technologic Systems PC/104 TS-ADC16 board.

 Source Addr is a pointer to the first of five integer registers which will be used as output

registers to the analog and digital outputs on the board.

 1st-4th: Registers to be sent to four analog outputs

 5th: Register containing bits to be sent to 16 digital outputs (LSB=DO 0)

 Operand is the card’s I/O address as hex string beginning with “x”, such as “X160”. This

must match the address jumper setting of the board.

 Result Addr is a pointer to the first of 22 integer registers which will contain the analog and

digital input values from the board.

 1st: Register containing bits from 16 digital inputs

 2nd-17th: Registers containing 16 analog inputs

 18th-21st: Registers containing 4 counter inputs

 22nd: Board ID (type) value read from the TS-ADC16 board.

6.3.59 PID-LOOP Src=Enbl, Oprnd=11Cfg-> 0=Ndx 1=(0=P,PI,PID,PIDp=3)

2=K.1% 3=T0(s/rpt) 4=T1 5=DirctAct 6=PV 7=SP 8=Man 9=Ovrd 10=MxErr

=>0-4095

 "Source Addr" is the enable.

 "Operand" is Starting Register Address to 11 Integers

 0=PID Index (0 to 7)

 1=Mode ? 0=P+BIAS(T1), 1=P+I, 2=PID(slope of error), 3=PID(slope of PV)

 2=K Proportional Band (0 to 1000 to represent 0.0 to 100.0%)

 3=T0 BIAS or Seconds per Repeat

 4=T1 (rate) Percent per second (0 to 5)

 5=Action 0=Reverse-Action, Non-zero=Direct-Action

 6=PV Process Variable (0 to 4095 counts)

 7=SP Setpoint (0 to 4095 counts)

 8=Man Manual Mode if Non-Zero (You should set Override to Output Value if Automatic)

 9=Override if in Manual Mode (in Automatic Mode set Override equal to Output)

 10=MaxErr, Maximum error Allowed in calculations (0 to 4095)

 "Result Addr" is output 0 to 4095 counts

6.3.60 POWer (x^y) Src=Mantissa, Operand=Exponent Returns REAL32

 Calculate the value of a number raised to a power.

 Source Addr is the value of the source (x).

 Operand is the exponent (y).

 Returns floating point of xy.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 54

 Operand is ignored.

6.3.61 PUBCONN Connection Status with MQtt Broker

 Data Type must be Integer.

 The Operand is ignored.

 Returns number 0=Not Connected, 1=Connecting to MQtt-Broker, 2=Connected to MQtt-

Broker.

 Strings are not allowed in the Source Addr.

6.3.62 PUBHOST Which Host Table Entry is being used SrcAddr=Enable

 The PUBHOST function is used where there are multiple IP host addresses in the MQTT

configuration object, where it may be desired to check which of the Host Entries is

currently being used as the active MQTT connection.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 If ResultType is an integer, the function returns the index number of the Host Entry table

being used (0 to N) for the MQTT connection.

 If ResultType is String, then the function returns two string values containing information

about the Host Entry table:

 Result Addr: Contains interface name and Host Entry (0 to N) being used for the MQTT

connection (such as “eth0 1”).

 Scratchpad [-1]: Contains the IP address, port number, and the Host Entry (0 to N) being

used for the MQTT connection (such as “10.100.1.2:1883 1”).

6.3.63 PUBNUMQ Number of Pending MQtt Messages

 The Source value is the Enable register, whose value should specify which MQTT client: use

1=MQttClient main object, 2=MQttClient (Extra Client 0), 3=MQttClient (Extra Client 1).

 The Operand is ignored.

 Returns number of Messages pending to be delivered to the MQtt Broker on the specified

MQTT client task.

 Strings are not allowed in Source Addr.

6.3.64 PUBLISH Src=Enbl Operand(AdrOf-8) 0=Rtdb_4_Topic256 1=QOS

2=Retain? 3=Priority 4=Rtu 5=Rtdb_Adr 6=Count 7=Big_Endian :

Return=PubHandle

 Publish an MQTT message to a broker.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is a Starting address of 8 RTDB Register values.

 The contents of the eight registers are interpreted as:

 1st Register=Address of a STRING-256 TOPIC String (cannot be ScratchPads)

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 55

 2nd Register=Quality of Service: 0=Fire/Forget, 1=Acknowledged, 2=Delivered Only Once

 3rd Register=Retained Data?

 4th Register=Priority: 0=Low, 1=Medium, 2=High

 5th Register=RTU Number under the same Internal Channel

 6th Register=Starting RTDB data register to publish

 7th Register=Count of above elements to publish

 8th Register=BIG Endian data stored in MQtt payload? 1=Big Endian, 0=Little Endian

 Returns an Integer Handle (1 to 32000) to track this Published data, or -3 if topic is not a

String-256 data register. The handle can be used by PUBQUERY to track the status of

the publication.

 If the 5th, 6th and 7th values are set to zero then the ‘TOPIC’ is actually a file name

composed of two parts. The portion preceding the last FORWARD SLASH (/)

character is the complete Directory Path. The portion following the last SLASH (/) is

used as both the ‘Topic Name’ and ‘File Name’. TILDE (~) characters in the ‘File

Name’ will be converted to SLASH (/) characters before being published as the ‘Topic

Name’. Any characters following DOUBLE TILDEs (~~) are removed.

 For instance, you could create a STRING-256 register with the following value:

“/tmp/sdcard/RTU~OMNI~hourly~~19230948238”. The entire string, including tildes, is

the complete filename containing data that will be published (in this example, the

“19230948238” represents the timestamp of the data in milliseconds). The MQTT

Topic name will be converted to “RTU/OMNI/hourly”, discarding everything before the

last SLASH and after the DOUBLE TILDE.

 Strings are not allowed in Source Addr.

6.3.65 PUBQUERY Check state of a message on the Q. Handle in Source

Addr Data.

 Check state of a message on the MQTT queue, using the “handle” returned in the MQTT

SEND CMD or PUBLISH functions.

 The Source value is the Enable register, whose value should specify which MQTT client: use

1=MQttClient main object, 2=MQttClient (Extra Client 0), 3=MQttClient (Extra Client 1).

 The Operand is the “handle” of the published message created by MQTT SEND CMD or

PUBLISH.

 Returns state (0 to 7) of the published packet on MQTT queue identified by the handle. If no

matching Handle, return -1; otherwise, 0=Idle, 1=MailSent, 2=MailRecv,

3=Connecting2Broker, 4=WaitConnACK, 5=SentPacket, 6=WaitPacketACK,

7=GotBadACK

 Strings are not allowed in Source Addr.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 56

6.3.66 PUBWALK Walk the MQtt-Broker Connection Table SrcAddr=Enable

 Force the MQtt-Client to walk the Host Connection Table (i.e., switch to the next host IP

address in the list).

 The Source value is the Enable register, whose value should specify which MQTT client: use

1=MQttClient main object, 2=MQttClient (Extra Client 0), 3=MQttClient (Extra Client 1).

 The Operand is ignored.

 Strings are not allowed in Source Addr.

6.3.67 PULSE FACTOR Src=RawCount, Oprnd=3PtrCfg-> [0]=K(Pls/Vol),

1=PrevRawCnt, 2=TotalVolume, Result=New Volume Increment

 Integrate raw 16 bit integer counter with a K factor (Pulses/UnitVolume) divisor.

 Source Value is raw input pulses. Operand is starting address of three Long Integers

elements.

 Element[0] is the K-factor.

 Element[1] is automatically updated with the previous raw counts.

 Element[2] is automatically updated with the Total Unit Volume and rolls over after

99,999,999 units.

 The Result value is the number of new Unit Volume counts added to the Previous Total

Volume

6.3.68 RANDOM Number (Ignore Source) Operand=Seed (e.g. Time),

Returns 0 to 2147483647

 Generate a random number.

 Source Addr is ignored.

 Operand is an integer containing the seed value of the randomization.

 Returns a random number as a long integer, 0 to 2147483647.

6.3.69 REAL to LONG Copies 32 bits from Source Value to 32 bits of an

Int32 value

 Convert REAL32 (floating point) number to long integer as 4-byte memory copy, in case an

integer value was stored improperly into a floating point register. This allows the value

to be access as a true integer.

 Source Addr is floating point number, Operand is ignored.

 Returns a long integer.

6.3.70 REVERSE [1,2,4] BYTE WORD Src=OriginalBits, Operand=1,2,4

Bytes-SrcData Rslt=Bits Reversed (Force to INTEGER)

 Reverse 8, 16 or 32 bits of Source Value and place into a INT8,INT16 or INT32 register.

 Operand contains value of 1 (8 bit), 2 (16 bit), or 4 (32 bit) conversion.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 57

6.3.71 RTU NAME SrcAddr=Channel : Operand=RtuAddr : Result is STRING

 "Source Addr" data Channel Number, Operand Data is Rtu Number. Forces Return data

type to STRING.

 Parameters Must be INTEGER data types.

 Returns an error message of “?RTU NOT FOUND?” for invalid Channels or RTU Addresses.

6.3.72 SCRAMBLE Src=Enbl Opernd=PtrAdr 3CfgRgs [0]=StringAdr

1=TextLen 2=Scramble? Result=Converted String

 Scramble (encrypt) or unscramble (unencrypt) a hex string. The Input String must be ASCII-

HEX such as A2B527 to represent binary 0xa2b527.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is a pointer to the first of three registers:

 1st: Address of the input String data.

 2nd: Length of the text string to scramble.

 3rd: Non-zero number to scramble the data, or 0 to unscramble an ASCII-HEX value

previously scrambled using this function.

 The result will also be ASCII-HEX String.

6.3.73 SegRecv Src=Enable Operand=PtrAdr 7CfgRgs 0=ComPrt 1=RtdbStrt

2=Cnt 3=Big? 4=CkSm 5=TmOt 6=Dmrk

 Receive raw bytes on a serial port and pack them into consecutive RTDB registers, filling

register with maximum allowed bytes.

 Must use Integer parameters. Source Value is the Enable.

 Operand Value is a reference to a start of 7 configuration registers.

 1st Register=Comm Port to receive bytes (1 to 80 for /dev/acscomm_).

 2nd Register=Starting Register to save data to.

 3rd Register=Count of Register to fill with bytes

 4th Register=Big Endian Data and ChkSum?

 5th Register=CheckSum Modem

 6th Register=Timeout in msec

 7th Register=Demark in msec

 Returns number of bytes received

6.3.74 SEGSEND Src=Enable Opernd=5PtrCfgs [0]=ComPort 1=StrtAdr

2=Count 3=BigEndn 4=CkSum

 Send raw bytes from consecutive RTDB registers to a serial port.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 The Operand is the pointer to the first of five registers:

 1st: Numeric value of the serial port, using custom serial “/dev/acscomm_” driver.

 2nd: Starting RTDB address of data to send.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 58

 3rd: Count of registers to send.

 4th: Send data in Big Endian, 1=Big Endian, 0=Little Endian

 5th: Whether to add a checksum on the block of data, 1=add checksum, else 0.

 Strings are not allowed in Source Addr.

6.3.75 SEND BIRTH/DEATH CERTIFICATE Src=Enbl Oprnd=3CfgRgs[]

0=Chan 1=Rtu 2=(1=Birth,0=Death) Return:0=Ok -1=Fail

 Send MQTT birth certificate or death certificate.

 If "Source Addr" data is non-zero (integer/real) then Operand is used as address of three

Parameters:

 1st: Master Channel (0 to 15)

 2nd: RTU Address

 3rd: Type of Certificate (1=Birth certificate, 0=Death certificate).

 Returns 0=SUCCESS or -1=Failure.

6.3.76 SET RTU STATUS Src=Enbl Oprnd=3CfgRgs[] 0=Chan 1=Rtu

2=State(0=Good,2=Fail) Return:0=Ok, -1=Failed

 Set the communication status of an RTU in the Director.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is the pointer to the start of three registers:

 1st: Master Channel (0 to 15)

 2nd: RTU Address

 3rd: State to set the RTU status (0=good, 2=failed)

 Returns 0=SUCCESS or -1=Failure.

6.3.77 SINE(x) Src=Real32-Radians Operande=Ignored Returns REAL32

SINE(x)

 Source Addr is a floating point number of angle in radians.

 Result is floating point as sine of source value.

 Operand is ignored.

6.3.78 SQUARE ROOT of Source Value

 Mathematical square root of "Source Addr" data.

 Strings are not allowed in Source Addr.

 The Operand is ignored.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 59

6.3.79 STRING DROP PART Src=String, Oprnd=NumBytes (Negatv=Left:

Positv=Right)

 Drop a number of bytes from start or end of a string. A positive value in Operand drops that

number of bytes from the left of the string, and a negative number drops the number of

bytes from the right.

6.3.80 STRING GET PART Src=String, Oprnd=NumBytes (Negatv=Left:

Positv=Right)

 Keep only a number of bytes from start or end of a string. A positive value in Operand keeps

that number of bytes from the left of the string, and a negative number keeps the

number of bytes from the right.

6.3.81 STRING HEADER Src=Original_String Operand=Delimiter :

Result=String to Left of 1st Delimiter

 Returns the bytes preceeding the matching delimiter in the Source String.

 Source Addr is the original String.

 Operand is a String of the delimiter character to search for.

 Result is a String containing the characters to the left of the first delimiter in the original.

6.3.82 STRING LENGTH of Src=String, Operand=Ignored, Result=Integer

Length of String

 Return length of a string as an Integer.

6.3.83 STRING TO LOWER Convert SrcString to Lower case, Ignore

Operand.

 Convert string to lowercase.

 Source Addr and Result are both Strings, Operand is ignored.

6.3.84 STRING TO UPPER Convert SrcString to Upper case, Ignore

Operand.

 Convert string to uppercase.

 Source Addr and Result are both Strings, Operand is ignored.

6.3.85 STRING TRAILER Src=Original_String Operand=Delimiter :

Result=String to Right of Last Delimiter

 Returns the bytes following the matching delimiter in the Source String.

 Source Addr is the original String.

 Operand is a String of the delimiter character to search for.

 Result is a String containing the characters to the right of the last delimiter in the original.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 60

6.3.86 STRING VALUE of Src=String with Operand ignored, Result=Integer

value of String

 "Source Addr" data is the String representation of a numeric value

 "Result Type" determines the output type (Int16, Int32, Float, Boolean), into which the String

is converted to a numeric value. If Result Type is Boolean, a 0 converts to FALSE and

a non-zero string value converts to TRUE. Integer values greater than allowed by the

data type get truncated.

 Operand is ignored.

6.3.87 SUBSCRIBE TO TOPIC Src=Enable : Opernd=TopicString-256 :

Result=SubscribeQueIndex

 Issue MQTT subscription for a data topic.

 Source Addr is the enable flag for the function, if containing non-zero value.

 Source Addr is an enable register to activate the function, if the register value is non-zero.

 Operand is STR-256 containing the topic to be subscribed to (full TOPIC including slashes, +

and # characters).

 Result is an integer of the Queue index of the subscription. Up to 16 subscriptions are

allowed in the Director (index 0-15).

6.3.88 SUBSCRIBED RECV'd DATA Src=Enable : Opernd=Cfgs[3]

0=AddrOfTopic 1=AddrOfUint8Data 2=Spare : Return=CntDataBytes

 Receive raw MQtt packet payloads directly into RTDB registers, one byte per register except

if RTDB is STR-256 then receive up to 255 bytes per RTDB register.

 The SUBSCRIBE function must be called at least once for one or more topics to be received.

 The Operand must contain the number of a starting RTDB register containing parameters for

the SUBSCRIBED RECV'd DATA function, where three registers are:

 1st: Register or scratchpad containing String of subscribed topic

 2nd: Starting RTDB register to store packet data

 3rd: Reserved

 Returns the count of data bytes received from an MQtt packet payload.

6.3.89 SYSTEM COMMAND Src=Shell_Script, Operand=

Shell_Script_Parameters : Returns (Integer) 0 if Successful

 "Source Addr" and Operand Values must both be strings.

 The 'system()' function is called by placing a space ' ' between the two strings. This allows the

Operand to be used to contain parameters for the script contained in Source Addr, but

since they are simply separated by spaces in the system call, it isn’t limited to

parameters of a script but could be two parts of a lengthy command line.

 Returns (Integer) 0 if successful.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 61

6.3.90 TABLE-23B Src=Observd-Density(kg/m^3) : Opernd=Temp-degF :

Result=Density @60degF

 Calculate Table-23B relative density correction.

6.3.91 TANG(x) Src=Real32-Radians Operand=Ignored Returns REAL32

TANG(x)

 Source Addr is a floating point number of angle in radians.

 Result is floating point as tangent of source value.

 Operand is ignored.

6.3.92 TEXT FIND Src=SrchString, Operand=ResultBufSize(<256) : Returns

up to BufSize bytes after Search-String

 After opening a text file (TEXT OPEN), the entire contents of the file are read into a

temporary internal buffer, and a pointer is placed at the beginning of the buffer. Use

TEXT FIND to find a String of characters in the buffer. If the String is found, then

return the MaxBytes (Operand value) after the Found String as the Result String. Also

move the starting pointer of the Buffer to the end of the Found String for a subsequent

TEXT FIND.

 "Source Addr" data is Search String (or empty to just get next available characters).

 "Operand" data is number of bytes (must be less than 256) to return from successful search

(empty search string is always successful).

 Returns a STRING.

6.3.93 TEXT FLUSH Buffer

 Frees memory allocated by the TEXT OPEN call and read of file.

 Strings are not allowed in Source Addr.

6.3.94 TEXT OPEN Src=FileName : Result is File Size, ignore Operand

 TEXT OPEN creates a buffer containing the entire contents of a text file and closes the

original file. After opening the file and creating the buffer, a pointer is placed at the

beginning of the file. Other TEXT functions then process String fragments from this

buffer, which may involve moving this pointer through the buffer.

 "Source Addr" data is FileName to open. Operand is ignored.

 Returns file size in bytes as an Integer.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 62

6.3.95 TEXT READ Src=Delimiter(s) Operand=MaxBytes, Returns String to

the right of Delimiter

 After opening a text file (TEXT OPEN), the entire contents of the file are read into a

temporary internal buffer, and a pointer is placed at the beginning of the buffer. Use

TEXT READ to find any of the characters in the Delimiter String. If any of the

characters is found, then return as the Result String the MaxBytes (Operand value),

starting from the previous pointer location, up to (but not including) the found delimiter.

Also move the starting pointer of the Buffer to the character after the delimiter for a

subsequent TEXT READ. If the delimiter isn’t found before the end of the file, the

MaxBytes will be returned starting from the previous pointer location.

 "Source Addr" data is Delimiter/Terminating character(s) to find (or empty to just get next

available characters).

 "Operand" is a number of bytes to return from successful search (if Source Addr is empty, the

search is always successful). Number of bytes is limited to 255 at a time, into an

STR-256 String buffer.

 Returns a STRING.

6.3.96 TEXT REMAINING : Ignore Src/Oprnd. Number of Bytes Still unread

remaining in Buffer

 Returns the number of bytes in buffer which have not yet been scanned.

 Source Addr and Operand are ignored.

6.3.97 TtysIn Src=Enbl Opernd=PtrAdr 5CfgRgs [0]=ComPort 1=MxLen

2=EndChr 3=TmOut 4=Demrk Result=TypeString

 Source Addr value is a reference to five Registers in the RTDB.

 1st Register=ComPortNdx 0 to N.

 2nd Register=Maximum Buffer Length.

 3rd Register=End Message Marker. If -1 then no end marker

 4th Register=Timeout to first byte in milliseconds

 5tht Register=Demark timer in msec for last byte

 The Result Type is returned as a String

 Uses Native Linux /dev/ttyS_ driver

6.3.98 TTYSOUT Src=Enbl Opernd=PtrAdr 3CfgRgs [0]=ComPort

[1]=SendLength [2]=StringAdr

 Operand Value is a reference to three Registers in the RTDB.

 1st Register=ComPortNdx 0 to N.

 2nd Register=Character Send Length.

 3rd Register=Adress of String

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 63

 The Result Type is returned as an Integer

 Uses Native Linux /dev/ttyS_ driver

6.3.99 XML GET COUNT Src=Enabl, Opernd=PtrReg-> 4CfgRgs

[0]=ElemntName 1=Parent 2=Attrib1 3=Attrib2

 <<< First Open XML file with TEXT OPEN function >>>

 "Source Addr" data the Enable flag.

 "Operand" data is Reference Address to multiple CHAR-32 Strings for XML searching.

 1st String=Element Name to Count (up to 32 chars)

 2nd String=Parent Element Name containing Element being counted. But first Parent

Element Attributes must be read to differentiate other Parent Elements (up to 32 chars)

 3rd String=A complete matching attribute in Parent to locate this child element. e.g.

chan="1" (up to 32 chars)

 4th String=A complete matching attribute in Parent to locate this child element. e.g.

rtu="10" (up to 32 chars)

 If Attributes are empty then topmost Parent is the matching element.

 Returns an INTEGER of the count of Elements.

6.3.100 XML GET FIELD Attributes Src=Enabl, Opernd=PtrReg-> 6CfgRgs

[0]=ElemntName 1=Parent [2-5]=AttributeNames

 <<< First Open XML file with TEXT OPEN function >>>

 "Source Addr" data the Enable flag.

 "Operand" data is Reference Address to multiple CHAR-32 Strings for XML searching.

 1st String=Element Name to Get Attributes from (up to 32 chars)

 2nd String=Parent Element Name containing Element being read. But first Parent Element

Attributes must be read to differentiate other Parent Elements (up to 32 chars)

 3rd String=First attribute to read from Element. If Attrib1 is.. chan= ..then result would be

chan="1" (up to 32 chars)

 4th String=Second attribute to read from Element. If Attrib2 is.. rtu= ..then result would be

rtu="27" (up to 32 chars)

 Nth String=Nth attribute to read from Element. If AttribN is.. blah= ..then result would be

blah="BLAH-BLAH" (up to 32 chars)

 After reading all sub elements from parent element then use XML NEXT FIELD to advance

the parent pointer.

 Returns ONE or MORE Attribute/Value STRING-32s starting at "Result Addr"..

6.3.101 XML NEXT FIELD Src=Element Name to Advance, Opernd=Ignored

Returns INTEGER Number of bytes still in Buffer

 Not required for Child Elements after calling Get Field. Only Parent Elements don't auto

advance.

Elecsys Director POD Programming Manual 81-0031-01 Rev. A

 Page 64

6.3.102 ZERO All Scratchpad Elements (-1 to -40)

 Reset all 40 Scratchpad registers back to zero or NULL strings.

 "Source Addr" data and Operand data are ignored.

